CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

A Test in Context: E/A and E/e' to Assess Diastolic Dysfunction and LV Filling Pressure A randomized multicentre trial to compare revascularization with optimal medical therapy for the treatment of chronic total coronary occlusions Pulmonary Artery Pressure-Guided Management of Patients With Heart Failure and Reduced Ejection Fraction Effect of Aspirin on All-Cause Mortality in the Healthy Elderly Residual Inflammatory Risk in Patients With Low LDL Cholesterol Levels Undergoing Percutaneous Coronary Intervention When high‐volume PCI operators in high‐volume hospitals move to lower volume hospitals—Do they still maintain high volume and quality of outcomes? Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association ACCF/SCAI/STS/AATS/AHA/ASNC 2009 Appropriateness Criteria for Coronary Revascularization: A Report by the American College of Cardiology Foundation Appropriateness Criteria Task Force, Society for Cardiovascular Angiography and Interventions, Society of Thoracic Surgeons, American Association for Thoracic Surgery, American Heart Association, and the American Society of Nuclear Cardiology Endorsed by the American Society of Echocardiography, the Heart Failure Society of America, and the Society of Cardiovascular Computed Tomography

JOURNAL:J Am Coll Cardiol. Article Link

The Role of Nitroglycerin and Other Nitrogen Oxides in Cardiovascular Therapeutics

Divakaran S, Loscalzo J et al. Keywords: angina; nitrate; nitrate-nitrite-NO pathway; nitric oxide; nitroglycerin; soluble guanylyl cyclase


The use of nitroglycerin in the treatment of angina pectoris began not long after its original synthesis in 1847. Since then, the discovery of nitric oxide as a biological effector and better understanding of its roles in vasodilation, cell permeability, platelet function, inflammation, and other vascular processes have advanced our knowledge of the hemodynamic (mostly mediated through vasodilation of capacitance and conductance arteries) and nonhemodynamic effects of organic nitrate therapy, via both nitric oxide-dependent and -independent mechanisms. Nitrates are rapidly absorbed from mucous membranes, the gastrointestinal tract, and the skin; thus, nitroglycerin is available in a number of preparations for delivery via several routes: oral tablets, sublingual tablets, buccal tablets, sublingual spray, transdermal ointment, and transdermal patch, as well as intravenous formulations. Organic nitrates are commonly used in the treatment of cardiovascular disease, but clinical data limit their use mostly to the treatment of angina. They are also used in the treatment of subsets of patients with heart failure and pulmonary hypertension. One major limitation of the use of nitrates is the development of tolerance. Although several agents have been studied for use in the prevention of nitrate tolerance, none are currently recommended owing to a paucity of supportive clinical data. Only 1 method of preventing nitrate tolerance remains widely accepted: the use of a dosing strategy that provides an interval of no or low nitrate exposure during each 24-h period. Nitric oxide's important role in several cardiovascular disease mechanisms continues to drive research toward finding novel ways to affect both endogenous and exogenous sources of this key molecular mediator.