CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Genetic dysregulation of endothelin-1 is implicated in coronary microvascular dysfunction Appropriate Use Criteria and Health Status Outcomes Following Chronic Total Occlusion Percutaneous Coronary Intervention: Insights From the OPEN-CTO Registry Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data Ten-Year Clinical Outcomes From a Trial of Three Limus-Eluting Stents With Different Polymer Coatings in Patients With Coronary Artery Disease A prospective natural-history study of coronary atherosclerosis A Novel Familial Cardiac Arrhythmia Syndrome with Widespread ST-Segment Depression Impact of Coronary Lesion Complexity in Percutaneous Coronary Intervention: One-Year Outcomes From the Large, Multicentre e-Ultimaster Registry Healthy Behavior, Risk Factor Control, and Survival in the COURAGE Trial

Review Article2017 Sep 26;70(13):1618-1636.

JOURNAL:J Am Coll Cardiol. Article Link

Cardiopulmonary Exercise Testing: What Is its Value?

Guazzi M, Bandera F, Ozemek C et al. Keywords: exercise; gas exchange analysis; heart failure; oxygen consumption

ABSTRACT


Compared with traditional exercise tests, cardiopulmonary exercise testing (CPET) provides a thorough assessment of exercise integrative physiology involving the pulmonary, cardiovascular, muscular, and cellular oxidative systems. Due to the prognostic ability of key variables, CPET applications in cardiology have grown impressively to include all forms of exercise intolerance, with a predominant focus on heart failure with reduced or with preserved ejection fraction. As impaired cardiac output and peripheral oxygen diffusion are the main determinants of the abnormal functional response in cardiac patients, invasive CPET has gained new popularity, especially for diagnosing early heart failure with preserved ejection fraction and exercise-induced pulmonary hypertension. The most impactful advance has recently come from the introduction of CPET combined with echocardiography or CPET imaging, which provides basic information regarding cardiac and valve morphology and function. This review highlights modern CPET use as a single or combined test that allows the pathophysiological bases of exercise limitation to be translated, quite easily, into clinical practice.