CBS 2019
CBSMD教育中心
中 文

Other Relevant Articles

Abstract

Recommended Article

Significantly less inappropriate shocks in ischemic patients compared to non-ischemic patients: The S-ICD experience of a high volume single-center Association of CYP2C19 Loss-of-Function Alleles with Major Adverse Cardiovascular Events of Clopidogrel in Stable Coronary Artery Disease Patients Undergoing Percutaneous Coronary Intervention: Meta-analysis Treatment of higher-risk patients with an indication for revascularization: evolution within the field of contemporary percutaneous coronary intervention Non-cardiac surgery in patients with coronary artery disease: risk evaluation and periprocedural management Same-Day Discharge After Elective Percutaneous Coronary Intervention: Insights From the British Cardiovascular Intervention Society Microthrombi As A Major Cause of Cardiac Injury in COVID-19: A Pathologic Study Routine Continuous Electrocardiographic Monitoring Following Percutaneous Coronary Interventions Rare Genetic Variants Associated With Sudden Cardiac Death in Adults

Original Research2017 Aug 22;70(8):942-954.

JOURNAL:J Am Coll Cardiol. Article Link

Geometry as a Confounder When Assessing Ventricular Systolic Function: Comparison Between Ejection Fraction and Strain

Stokke TM, Hasselberg NE, Remme EW et al. Keywords: left ventricular geometry; mathematical modeling; myocardial strain

ABSTRACT


BACKGROUND - Preserved left ventricular (LV) ejection fraction (EF) and reduced myocardial strain are reported in patients with hypertrophic cardiomyopathy, ischemic heart disease, diabetes mellitus, and more.


OBJECTIVES - The authors performed a combined mathematical and echocardiographic study to understand the inconsistencies between EF and strains.


METHODS - An analytical equation showing the relationship between EF and the 4 parameters, global longitudinal strain (GLS), global circumferential strain (GCS), wall thickness, and short-axis diameter, was derived from an elliptical LV model. The equation was validated by measuring the 4 parameters by echocardiography in 100 subjects with EF ranging from 16% to 72% and comparing model-predicted EF with measured EF. The effect of the different parameters on EF was explored in the model and compared with findings in the patients.


RESULTS - Calculated EF had very good agreement with measured EF (r = 0.95). The model showed that GCS contributes more than twice as much to EF than GLS. A significant reduction of GLS could be compensated by a small increase of GCS or wall thickness or reduced diameter. The model further demonstrated how EF can be maintained in ventricles with increased wall thickness or reduced diameter, despite reductions in both longitudinal and circumferential shortening. This was consistent with similar EF in 20 control subjects and 20 hypertrophic cardiomyopathy patients with increased wall thickness and reductions in both circumferential and longitudinal shortening (all p < 0.01).


CONCLUSIONS - Reduced deformation despite preserved EF can be explained through geometric factors. Due to geometric confounders, strain better reflects systolic function in patients with preserved EF.


Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.