CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

2016 ACC/AHA/HFSA Focused Update on New Pharmacological Therapy for Heart Failure: An Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure A VOYAGER Meta-Analysis of the Impact of Statin Therapy on Low-Density Lipoprotein Cholesterol and Triglyceride Levels in Patients With Hypertriglyceridemia Derivation and Validation of a Chronic Total Coronary Occlusion Intervention Procedural Success Score From the 20,000-Patient EuroCTO Registry:The EuroCTO (CASTLE) Score State of the Art in Noninvasive Imaging of Ischemic Heart Disease and Coronary Microvascular Dysfunction in Women: Indications, Performance, and Limitations Hs-cTroponins for the prediction of recurrent cardiovascular events in patients with established CHD - A comparative analysis from the KAROLA study Major infections after bypass surgery and stenting for multivessel coronary disease in the randomised SYNTAX trial Dynamic atrioventricular delay programming improves ventricular electrical synchronization as evaluated by 3D vectorcardiography Individualizing Revascularization Strategy for Diabetic Patients With Multivessel Coronary Disease

Original Research30 Jul 2018 [Epub ahead]

JOURNAL:Circulation. Article Link

The Astronaut Cardiovascular Health and Risk Modification (Astro-CHARM) Coronary Calcium Atherosclerotic Cardiovascular Disease Risk Calculator

A Khera , MJ Budoff , CJ O’Donnell et al. Keywords: coronary artery calcium; risk prediction

ABSTRACT


BACKGROUND - Coronary artery calcium (CAC) is a powerful novel risk indicator for atherosclerotic cardiovascular disease (ASCVD). Currently, there is no available ASCVD risk prediction tool that integrates traditional risk factors and CAC.


METHODS - To develop a CAC ASCVD risk tool for younger individuals in the general population, subjects aged 40-65 without prior CVD from three population-based cohorts were included. Cox proportional hazards models were developed incorporating age, sex, systolic blood pressure, total and HDL cholesterol, smoking, diabetes, hypertension treatment, family history of MI, high-sensitivity CRP (hs-CRP), and CAC scores (Astro-CHARM model) as dependent variables and ASCVD (non-fatal/fatal MI or stroke) as the outcome. Model performance was assessed internally, and validated externally in a fourth cohort.

RESULTS - The derivation study comprised 7382 individuals with mean age 51 years, 45% female, and 55% non-white. The median CAC was 0 (25-75th [0,9]) and 304 ASCVD events occurred in median 10.9 years of follow-up. The c-statistic was 0.784 for the risk factor model, and 0.817 for Astro-CHARM (p<0.0001). Compared with the risk factor model, the Astro-CHARM model resulted in integrated discrimination improvement (IDI=0.0252) as well as net reclassification improvement (NRI=0.121, p<0.0001). The Astro-CHARM model demonstrated good discrimination (c=0.78) and calibration (Nam-D’Agostino χ2:13.2, p=0.16) in the validation cohort (n=2057; 55 events). A mobile application and web-based tool were developed to facilitate clinical application of this tool ( www.AstroCHARM.org).

CONCLUSIONS - The Astro-CHARM tool is the first integrated ASCVD risk calculator to incorporate risk factors, including hs-CRP and family history, and CAC data. It improves risk prediction compared with traditional risk factor equations and could be useful in risk-based decision making for CV disease prevention in the middle-aged general population.