CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

Burden of 30-Day Readmissions After Percutaneous Coronary Intervention in 833,344 Patients in the United States: Predictors, Causes, and Cost Generalizing Intensive Blood Pressure Treatment to Adults With Diabetes Mellitus ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2019 Appropriate Use Criteria for Multimodality Imaging in the Assessment of Cardiac Structure and Function in Nonvalvular Heart Disease: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and the Society of Thoracic Surgeons Mortality 10 Years After Percutaneous or Surgical Revascularization in Patients With Total Coronary Artery Occlusions Impact of Coronary Lesion Complexity in Percutaneous Coronary Intervention: One-Year Outcomes From the Large, Multicentre e-Ultimaster Registry Invasive Coronary Physiology After Stent Implantation: Another Step Toward Precision Medicine A Randomized Trial to Assess Regional Left Ventricular Function After Stent Implantation in Chronic Total Occlusion The REVASC Trial Percutaneous coronary intervention using a combination of robotics and telecommunications by an operator in a separate physical location from the patient: an early exploration into the feasibility of telestenting (the REMOTE-PCI study)

Original Research30 Jul 2018 [Epub ahead]

JOURNAL:Circulation. Article Link

The Astronaut Cardiovascular Health and Risk Modification (Astro-CHARM) Coronary Calcium Atherosclerotic Cardiovascular Disease Risk Calculator

A Khera , MJ Budoff , CJ O’Donnell et al. Keywords: coronary artery calcium; risk prediction

ABSTRACT


BACKGROUND - Coronary artery calcium (CAC) is a powerful novel risk indicator for atherosclerotic cardiovascular disease (ASCVD). Currently, there is no available ASCVD risk prediction tool that integrates traditional risk factors and CAC.


METHODS - To develop a CAC ASCVD risk tool for younger individuals in the general population, subjects aged 40-65 without prior CVD from three population-based cohorts were included. Cox proportional hazards models were developed incorporating age, sex, systolic blood pressure, total and HDL cholesterol, smoking, diabetes, hypertension treatment, family history of MI, high-sensitivity CRP (hs-CRP), and CAC scores (Astro-CHARM model) as dependent variables and ASCVD (non-fatal/fatal MI or stroke) as the outcome. Model performance was assessed internally, and validated externally in a fourth cohort.

RESULTS - The derivation study comprised 7382 individuals with mean age 51 years, 45% female, and 55% non-white. The median CAC was 0 (25-75th [0,9]) and 304 ASCVD events occurred in median 10.9 years of follow-up. The c-statistic was 0.784 for the risk factor model, and 0.817 for Astro-CHARM (p<0.0001). Compared with the risk factor model, the Astro-CHARM model resulted in integrated discrimination improvement (IDI=0.0252) as well as net reclassification improvement (NRI=0.121, p<0.0001). The Astro-CHARM model demonstrated good discrimination (c=0.78) and calibration (Nam-D’Agostino χ2:13.2, p=0.16) in the validation cohort (n=2057; 55 events). A mobile application and web-based tool were developed to facilitate clinical application of this tool ( www.AstroCHARM.org).

CONCLUSIONS - The Astro-CHARM tool is the first integrated ASCVD risk calculator to incorporate risk factors, including hs-CRP and family history, and CAC data. It improves risk prediction compared with traditional risk factor equations and could be useful in risk-based decision making for CV disease prevention in the middle-aged general population.