CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

Randomized Comparison of Everolimus- and Zotarolimus-Eluting Coronary Stents With Biolimus-Eluting Stents in All-Comer Patients Use of High-Risk Coronary Atherosclerotic Plaque Detection for Risk Stratification of Patients With Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial Residual Inflammatory Risk in Patients With Low LDL Cholesterol Levels Undergoing Percutaneous Coronary Intervention Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease Coronary Angiography after Cardiac Arrest without ST-Segment Elevation The Year in Cardiovascular Medicine 2020: Coronary Intervention Association of preoperative glucose concentration with myocardial injury and death after non-cardiac surgery (GlucoVISION): a prospective cohort study Effects of Aspirin for Primary Prevention in Persons with Diabetes Mellitus

Review ArticleEpub 2017 Sep 15; Volume 15, 2017 - Issue 11

JOURNAL:Expert Rev Cardiovasc Ther. Article Link

Robotics in percutaneous cardiovascular interventions

Pourdjabbar A, Ang L, Mahmud E et al. Keywords: Robotics; coronary artery disease; percutaneous coronary intervention; peripheral arterial disease; radiation safety

ABSTRACT

Introduction - The fundamental technique of performing percutaneous cardiovascular (CV) interventions has remained unchanged and requires operators to wear heavy lead aprons to minimize exposure to ionizing radiation. Robotic technology is now being utilized in interventional cardiology partially as a direct result of the increasing appreciation of the long-term occupational hazards of the field. This review was undertaken to report the clinical outcomes of percutaneous robotic coronary and peripheral vascular interventions.

Areas covered - A systematic literature review of percutaneous robotic CV interventions was undertaken. The safety and feasibility of percutaneous robotically-assisted CV interventions has been validated in simple to complex coronary disease, and iliofemoral disease. Studies have shown that robotically-assisted PCI significantly reduces operator exposure to harmful ionizing radiation without compromising procedural success or clinical efficacy. In addition to the operator benefits, robotically-assisted intervention has the potential for patient advantages by allowing more accurate lesion length measurement, precise stent placement and lower patient radiation exposure. However, further investigation is required to fully elucidate these potential benefits.

Expert commentary - Incremental improvement in robotic technology and telecommunications would enable treatment of an even broader patient population, and potentially provide remote robotic PCI.