CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

Catheterization Laboratory Considerations During the Coronavirus (COVID-19) Pandemic: From the ACC’s Interventional Council and SCAI Coronary Artery Calcium Is Associated with Left Ventricular Diastolic Function Independent of Myocardial Ischemia The Year in Cardiovascular Medicine 2020: Coronary Intervention Association of preoperative glucose concentration with myocardial injury and death after non-cardiac surgery (GlucoVISION): a prospective cohort study Effects of Aspirin for Primary Prevention in Persons with Diabetes Mellitus Use of High-Risk Coronary Atherosclerotic Plaque Detection for Risk Stratification of Patients With Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial The Astronaut Cardiovascular Health and Risk Modification (Astro-CHARM) Coronary Calcium Atherosclerotic Cardiovascular Disease Risk Calculator Coronary Angiography after Cardiac Arrest without ST-Segment Elevation

Original ResearchVolume 11, Issue 12, December 2018

JOURNAL:JACC Cardiovasc Imaging. Article Link

Coronary Artery Calcium Progression Is Associated With Coronary Plaque Volume Progression - Results From a Quantitative Semiautomated Coronary Artery Plaque Analysis

I Ceponiene, R Nakanishi, K Osawa et al. Keywords: coronary artery calcium progression; coronary computed tomography angiography; plaque progression

ABSTRACT


OBJECTIVES - The aim of this study was to determine whether coronary artery calcium (CAC) progression was associated with coronary plaque progression on coronary computed tomographic angiography.


BACKGROUND - CAC progression and coronary plaque characteristics are associated with incident coronary heart disease. However, natural history of coronary atherosclerosis has not been well described to date, and the understanding of the association between CAC progression and coronary plaque subtypes such as noncalcified plaque progression remains unclear.


METHODS - Consecutive patients who were referred to our clinic for evaluation and had serial coronary computed tomography angiography scans performed were included in the study. Coronary artery plaque (total, fibrous, fibrous-fatty, low-attenuation, densely calcified) volumes were calculated using semiautomated plaque analysis software.


RESULTS - A total of 211 patients (61.3 ± 12.7 years of age, 75.4% men) were included in the analysis. The mean interval between baseline and follow-up scans was 3.3 ± 1.7 years. CAC progression was associated with a significant linear increase in all types of coronary plaque and no plaque progression was observed in subjects without CAC progression. In multivariate analysis, annualized and normalized total plaque (β = 0.38; p < 0.001), noncalcified plaque (β = 0.35; p = 0.001), fibrous plaque (β = 0.56; p < 0.001), and calcified plaque (β = 0.63; p = 0.001) volume progression, but not fibrous-fatty (β = 0.03; p = 0.28) or low-attenuation plaque (β = 0.11; p = 0.1) progression, were independently associated with CAC progression. Plaque progression did not differ between the sexes. A significantly increased total and calcified plaque progression was observed in statin users.


CONCLUSIONS - In a clinical practice setting, progression of CAC was significantly associated with an increase in both calcified and noncalcified plaque volume, except fibrous-fatty and low-attenuation plaque. Serial CAC measurements may be helpful in determining the need for intensification of preventive treatment.