CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

The HACD4 haplotype as a risk factor for atherosclerosis in males Coronary Catheterization and Percutaneous Coronary Intervention in China: 10-Year Results From the China PEACE-Retrospective CathPCI Study CSC Expert Consensus on Principles of Clinical Management of Patients with Severe Emergent Cardiovascular Diseases during the COVID-19 Epidemic 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons How Low to Go With Glucose, Cholesterol, and Blood Pressure in Primary Prevention of CVD SCAI Expert Consensus Statement Update on Best Practices for Transradial Angiography and Intervention Everolimus-Eluting Bioresorbable Scaffolds Versus Everolimus-Eluting Metallic Stents LOX-1 in Atherosclerosis and Myocardial Ischemia: Biology, Genetics, and Modulation

Original ResearchVolume 11, Issue 12, December 2018

JOURNAL:JACC Cardiovasc Imaging. Article Link

Coronary Artery Calcium Progression Is Associated With Coronary Plaque Volume Progression - Results From a Quantitative Semiautomated Coronary Artery Plaque Analysis

I Ceponiene, R Nakanishi, K Osawa et al. Keywords: coronary artery calcium progression; coronary computed tomography angiography; plaque progression

ABSTRACT


OBJECTIVES - The aim of this study was to determine whether coronary artery calcium (CAC) progression was associated with coronary plaque progression on coronary computed tomographic angiography.


BACKGROUND - CAC progression and coronary plaque characteristics are associated with incident coronary heart disease. However, natural history of coronary atherosclerosis has not been well described to date, and the understanding of the association between CAC progression and coronary plaque subtypes such as noncalcified plaque progression remains unclear.


METHODS - Consecutive patients who were referred to our clinic for evaluation and had serial coronary computed tomography angiography scans performed were included in the study. Coronary artery plaque (total, fibrous, fibrous-fatty, low-attenuation, densely calcified) volumes were calculated using semiautomated plaque analysis software.


RESULTS - A total of 211 patients (61.3 ± 12.7 years of age, 75.4% men) were included in the analysis. The mean interval between baseline and follow-up scans was 3.3 ± 1.7 years. CAC progression was associated with a significant linear increase in all types of coronary plaque and no plaque progression was observed in subjects without CAC progression. In multivariate analysis, annualized and normalized total plaque (β = 0.38; p < 0.001), noncalcified plaque (β = 0.35; p = 0.001), fibrous plaque (β = 0.56; p < 0.001), and calcified plaque (β = 0.63; p = 0.001) volume progression, but not fibrous-fatty (β = 0.03; p = 0.28) or low-attenuation plaque (β = 0.11; p = 0.1) progression, were independently associated with CAC progression. Plaque progression did not differ between the sexes. A significantly increased total and calcified plaque progression was observed in statin users.


CONCLUSIONS - In a clinical practice setting, progression of CAC was significantly associated with an increase in both calcified and noncalcified plaque volume, except fibrous-fatty and low-attenuation plaque. Serial CAC measurements may be helpful in determining the need for intensification of preventive treatment.