CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

The HACD4 haplotype as a risk factor for atherosclerosis in males Coronary Catheterization and Percutaneous Coronary Intervention in China: 10-Year Results From the China PEACE-Retrospective CathPCI Study CSC Expert Consensus on Principles of Clinical Management of Patients with Severe Emergent Cardiovascular Diseases during the COVID-19 Epidemic 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons How Low to Go With Glucose, Cholesterol, and Blood Pressure in Primary Prevention of CVD SCAI Expert Consensus Statement Update on Best Practices for Transradial Angiography and Intervention Everolimus-Eluting Bioresorbable Scaffolds Versus Everolimus-Eluting Metallic Stents LOX-1 in Atherosclerosis and Myocardial Ischemia: Biology, Genetics, and Modulation

Original Research2008 Aug;4(2):181-3.

JOURNAL:EuroIntervention. Article Link

Management of two major complications in the cardiac catheterisation laboratory: the no-reflow phenomenon and coronary perforations

Muller O, Windecker S, Cuisset T et al. Keywords: complication; no-reflow phenomenon; coronary perforation

ABSTRACT


The no-reflow phenomenon has been defined in 2001 by Eeckhout and Kern as inadequate myocardial perfusion through a given segment of the coronary circulation without angiographic evidence of mechanical vessel obstruction1. Rates of cardiac death and non-fatal cardiac events are increased in patients with compared to those without no-reflow2,3. The term “no reflow” encompasses the slow-flow, slow-reflow, no-flow and low-flow phenomenon. Its incidence depends on the clinical setting, ranging from as low as 2% in elective native coronary percutaneous coronary interventions (PCI) to 20% in saphenous venous graft (SVG) PCI and up to 26% in acute myocardial infarction (AMI) mechanical reperfusion4-6. Depending on the clinical setting, the mechanism of the no-reflow phenomenon differs. Distal embolisation and ischaemic-reperfusion cell injury prevail in patients with AMI, microvascular spasm and embolisation of aggregated platelets occur in native coronary PCI, whereas embolisation of degenerated plaque elements, including thrombotic and atherosclerotic debris are encountered during SVG PCI7. The no-reflow phenomenon is classified according to its pathophysiology with potential implications for its treatment in the categories provided in Table 1.