CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

Burden of 30-Day Readmissions After Percutaneous Coronary Intervention in 833,344 Patients in the United States: Predictors, Causes, and Cost ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2019 Appropriate Use Criteria for Multimodality Imaging in the Assessment of Cardiac Structure and Function in Nonvalvular Heart Disease: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and the Society of Thoracic Surgeons Generalizing Intensive Blood Pressure Treatment to Adults With Diabetes Mellitus Frequency, Regional Variation, and Predictors of Undetermined Cause of Death in Cardiometabolic Clinical Trials: A Pooled Analysis of 9259 Deaths in 9 Trials Impact of Coronary Lesion Complexity in Percutaneous Coronary Intervention: One-Year Outcomes From the Large, Multicentre e-Ultimaster Registry Mortality 10 Years After Percutaneous or Surgical Revascularization in Patients With Total Coronary Artery Occlusions Invasive Coronary Physiology After Stent Implantation: Another Step Toward Precision Medicine Percutaneous coronary intervention using a combination of robotics and telecommunications by an operator in a separate physical location from the patient: an early exploration into the feasibility of telestenting (the REMOTE-PCI study)

Review ArticleVolume 12, Issue 6, June 2019

JOURNAL:JACC: Cardiovascular Imaging Article Link

The Future of Cardiovascular Computed Tomography Advanced Analytics and Clinical Insights

ED Nicol, BL Norgaard, P Blanke et al. Keywords: atherosclerosis; cardiac CT; FFRCT; machine learning; radiomics; TMVR

ABSTRACT


Cardiovascular computed tomography (CCT) has undergone rapid maturation over the last decade and is now of proven clinical utility in the diagnosis and management of coronary artery disease, in guiding structural heart disease intervention, and in the diagnosis and treatment of congenital heart disease. The next decade will undoubtedly witness further advances in hardware and advanced analytics that will potentially see an increasingly core role for CCT at the center of clinical cardiovascular practice. In coronary artery disease assessment this may be via improved hemodynamic adjudication, and shear stress analysis using computational flow dynamics, more accurate and robust plaque characterization with spectral or photon-counting CT, or advanced quantification of CT data via artificial intelligence, machine learning, and radiomics. In structural heart disease, CCT is already pivotal to procedural planning with adjudication of gradients before and following intervention, whereas in congenital heart disease CCT is already used to support clinical decision making from neonates to adults, often with minimal radiation dose. In both these areas the role of computational flow dynamics, advanced tissue printing, and image modelling has the potential to revolutionize the way these complex conditions are managed, and CCT is likely to become an increasingly critical enabler across the whole advancing field of cardiovascular medicine.