CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

Defining High Bleeding Risk in Patients Undergoing Percutaneous Coronary Intervention: A Consensus Document From the Academic Research Consortium for High Bleeding Risk Association of Coronary Anatomical Complexity With Clinical Outcomes After Percutaneous or Surgical Revascularization in the Veterans Affairs Clinical Assessment Reporting and Tracking Program Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease Multimodality imaging in cardiology: a statement on behalf of the Task Force on Multimodality Imaging of the European Association of Cardiovascular Imaging Select Drug-Drug Interactions With Direct Oral Anticoagulants ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2019 Appropriate Use Criteria for Multimodality Imaging in the Assessment of Cardiac Structure and Function in Nonvalvular Heart Disease: A Report of the American College of Cardiology Appropriate Use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and the Society of Thoracic Surgeons Best Practices for the Prevention of Radial Artery Occlusion After Transradial Diagnostic Angiography and Intervention An International Consensus Paper Classification of Deaths in Cardiovascular Outcomes Trials Known Unknowns and Unknown Unknowns

Review ArticleVolume 12, Issue 6, June 2019

JOURNAL:JACC: Cardiovascular Imaging Article Link

The Future of Cardiovascular Computed Tomography Advanced Analytics and Clinical Insights

ED Nicol, BL Norgaard, P Blanke et al. Keywords: atherosclerosis; cardiac CT; FFRCT; machine learning; radiomics; TMVR

ABSTRACT


Cardiovascular computed tomography (CCT) has undergone rapid maturation over the last decade and is now of proven clinical utility in the diagnosis and management of coronary artery disease, in guiding structural heart disease intervention, and in the diagnosis and treatment of congenital heart disease. The next decade will undoubtedly witness further advances in hardware and advanced analytics that will potentially see an increasingly core role for CCT at the center of clinical cardiovascular practice. In coronary artery disease assessment this may be via improved hemodynamic adjudication, and shear stress analysis using computational flow dynamics, more accurate and robust plaque characterization with spectral or photon-counting CT, or advanced quantification of CT data via artificial intelligence, machine learning, and radiomics. In structural heart disease, CCT is already pivotal to procedural planning with adjudication of gradients before and following intervention, whereas in congenital heart disease CCT is already used to support clinical decision making from neonates to adults, often with minimal radiation dose. In both these areas the role of computational flow dynamics, advanced tissue printing, and image modelling has the potential to revolutionize the way these complex conditions are managed, and CCT is likely to become an increasingly critical enabler across the whole advancing field of cardiovascular medicine.