CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

2016 ACC/AHA/HFSA Focused Update on New Pharmacological Therapy for Heart Failure: An Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Hs-cTroponins for the prediction of recurrent cardiovascular events in patients with established CHD - A comparative analysis from the KAROLA study Validation of High-Risk Features for Stent-Related Ischemic Events as Endorsed by the 2017 DAPT Guidelines Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond Left Ventricular Assist Devices for Lifelong Support Routinely reported ejection fraction and mortality in clinical practice: where does the nadir of risk lie? A Randomized Trial Comparing the NeoVas Sirolimus-Eluting Bioresorbable Scaffold and Metallic Everolimus-Eluting Stents 2019 AHA/ACC/HRS Focused Update of the 2014 AHA/ACC/HRS Guideline for the Management of Patients With Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society

Review ArticleVolume 12, Issue 14, July 2019

JOURNAL:JACC Cardiovasc Interv. Article Link

Impact of Artificial Intelligence on Interventional Cardiology: From Decision-Making Aid to Advanced Interventional Procedure Assistance

P Sardar, JD Abbott, A Kundu et al. Keywords: artificial intelligence; interventional cardiology

ABSTRACT


Access to big data analyzed by supercomputers using advanced mathematical algorithms (i.e., deep machine learning) has allowed for enhancement of cognitive output (i.e., visual imaging interpretation) to previously unseen levels and promises to fundamentally change the practice of medicine. This field, known as “artificial intelligence” (AI), is making significant progress in areas such as automated clinical decision making, medical imaging analysis, and interventional procedures, and has the potential to dramatically influence the practice of interventional cardiology. The unique nature of interventional cardiology makes it an ideal target for the development of AI-based technologies designed to improve real-time clinical decision making, streamline workflow in the catheterization laboratory, and standardize catheter-based procedures through advanced robotics. This review provides an introduction to AI by highlighting its scope, potential applications, and limitations in interventional cardiology.