CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

The HACD4 haplotype as a risk factor for atherosclerosis in males Coronary Catheterization and Percutaneous Coronary Intervention in China: 10-Year Results From the China PEACE-Retrospective CathPCI Study CSC Expert Consensus on Principles of Clinical Management of Patients with Severe Emergent Cardiovascular Diseases during the COVID-19 Epidemic 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons How Low to Go With Glucose, Cholesterol, and Blood Pressure in Primary Prevention of CVD SCAI Expert Consensus Statement Update on Best Practices for Transradial Angiography and Intervention Everolimus-Eluting Bioresorbable Scaffolds Versus Everolimus-Eluting Metallic Stents LOX-1 in Atherosclerosis and Myocardial Ischemia: Biology, Genetics, and Modulation

Review ArticleVolume 12, Issue 14, July 2019

JOURNAL:JACC Cardiovasc Interv. Article Link

Impact of Artificial Intelligence on Interventional Cardiology: From Decision-Making Aid to Advanced Interventional Procedure Assistance

P Sardar, JD Abbott, A Kundu et al. Keywords: artificial intelligence; interventional cardiology

ABSTRACT


Access to big data analyzed by supercomputers using advanced mathematical algorithms (i.e., deep machine learning) has allowed for enhancement of cognitive output (i.e., visual imaging interpretation) to previously unseen levels and promises to fundamentally change the practice of medicine. This field, known as “artificial intelligence” (AI), is making significant progress in areas such as automated clinical decision making, medical imaging analysis, and interventional procedures, and has the potential to dramatically influence the practice of interventional cardiology. The unique nature of interventional cardiology makes it an ideal target for the development of AI-based technologies designed to improve real-time clinical decision making, streamline workflow in the catheterization laboratory, and standardize catheter-based procedures through advanced robotics. This review provides an introduction to AI by highlighting its scope, potential applications, and limitations in interventional cardiology.