CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

Inflammation: A New Target For CAD Treatment and Prevention Blood CSF1 and CXCL12 as Causal Mediators of Coronary Artery Disease Temporal trends in percutaneous coronary interventions thru the drug eluting stent era: Insights from 18,641 procedures performed over 12-year period Use of Risk Assessment Tools to Guide Decision-Making in the Primary Prevention of Atherosclerotic Cardiovascular Disease A Special Report From the American Heart Association and American College of Cardiology Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population: The China-PAR Project (Prediction for ASCVD Risk in China) Incidence, Treatment, and Outcomes of Coronary Perforation During Chronic Total Occlusion Percutaneous Coronary Intervention ACC临床简报:新型冠状病毒对心脏的影响(2019-nCoV) Correction of a pathogenic gene mutation in human embryos

Review Article2017 Jul 11;70(2):196-211.

JOURNAL:J Am Coll Cardiol. Article Link

Basic Biology of Oxidative Stress and the Cardiovascular System: Part 1 of a 3-Part Series

Sack MN, Fyhrquist FY, Kovacic JC et al. Keywords: apoptosis; mitochondria; necrosis; reactive oxygen species; senescence; sirtuin; telomere

ABSTRACT


The generation of reactive oxygen species (ROS) is a fundamental aspect of normal human biology. However, when ROS generation exceeds endogenous antioxidant capacity, oxidative stress arises. If unchecked, ROS production and oxidative stress mediate tissue and cell damage that can spiral in a cycle of inflammation and more oxidative stress. This article is part 1 of a 3-part series covering the role of oxidative stress in cardiovascular disease. The broad theme of this first paper is the mechanisms and biology of oxidative stress. Specifically, the authors review the basic biology of oxidative stress, relevant aspects of mitochondrial function, and stress-related cell death pathways (apoptosis and necrosis) as they relate to the heart and cardiovascular system. They then explore telomere biology and cell senescence. As important regulators and sensors of oxidative stress, telomeres are segments of repetitive nucleotide sequence at each end of a chromosome that protect the chromosome ends from deterioration.