CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

Translational Perspective on Epigenetics in Cardiovascular Disease Uptake of Drug-Eluting Bioresorbable Vascular Scaffolds in Clinical Practice : An NCDR Registry to Practice Project Overall and Cause-Specific Mortality in Randomized Clinical Trials Comparing Percutaneous Interventions With Coronary Bypass Surgery: A Meta-analysis Chronic Total Occlusion Percutaneous Coronary Intervention: Evidence and Controversies 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary Syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines Geometry as a Confounder When Assessing Ventricular Systolic Function: Comparison Between Ejection Fraction and Strain A Test in Context: E/A and E/e' to Assess Diastolic Dysfunction and LV Filling Pressure Cardiopulmonary Exercise Testing: What Is its Value?

Review Article2017 Oct 31;70(18):2278-2289.

JOURNAL:J Am Coll Cardiol. Article Link

Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond

Libby P Keywords: acute coronary syndromes; high-sensitivity C-reactive protein; interleukin-1; myocardial infarction

ABSTRACT


Inflammatory pathways drive atherogenesis and link conventional risk factors to atherosclerosis and its complications. One inflammatory mediator has come to the fore as a therapeutic target in cardiovascular disease. The experimental and clinical evidence reviewed here support interleukin-1 beta (IL-1β) as both a local vascular and systemic contributor in this regard. Intrinsic vascular wall cells and lesional leukocytes alike can produce this cytokine. Local stimuli in the plaque favor the generation of active IL-1β through the action of a molecular assembly known as the inflammasome. Clinically applicable interventions that interfere with IL-1 action can improve cardiovascular outcomes, ushering in a new era of anti-inflammatory therapies for atherosclerosis. The translational path described here illustrates how advances in basic vascular biology may transform therapy. Biomarker-directed application of anti-inflammatory interventions promises to help us achieve a more precise and personalized allocation of therapy for our cardiovascular patients.