CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

State of the Art in Noninvasive Imaging of Ischemic Heart Disease and Coronary Microvascular Dysfunction in Women: Indications, Performance, and Limitations Post-Stroke Cardiovascular Complications and Neurogenic Cardiac Injury: JACC State-of-the-Art Review Routinely reported ejection fraction and mortality in clinical practice: where does the nadir of risk lie? Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association Older Adults in the Cardiac Intensive Care Unit: Factoring Geriatric Syndromes in the Management, Prognosis, and Process of Care: A Scientific Statement From the American Heart Association Effect of Aspirin on All-Cause Mortality in the Healthy Elderly COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up Derivation and Validation of a Chronic Total Coronary Occlusion Intervention Procedural Success Score From the 20,000-Patient EuroCTO Registry:The EuroCTO (CASTLE) Score

Review Article2017 Oct 31;70(18):2278-2289.

JOURNAL:J Am Coll Cardiol. Article Link

Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond

Libby P Keywords: acute coronary syndromes; high-sensitivity C-reactive protein; interleukin-1; myocardial infarction

ABSTRACT


Inflammatory pathways drive atherogenesis and link conventional risk factors to atherosclerosis and its complications. One inflammatory mediator has come to the fore as a therapeutic target in cardiovascular disease. The experimental and clinical evidence reviewed here support interleukin-1 beta (IL-1β) as both a local vascular and systemic contributor in this regard. Intrinsic vascular wall cells and lesional leukocytes alike can produce this cytokine. Local stimuli in the plaque favor the generation of active IL-1β through the action of a molecular assembly known as the inflammasome. Clinically applicable interventions that interfere with IL-1 action can improve cardiovascular outcomes, ushering in a new era of anti-inflammatory therapies for atherosclerosis. The translational path described here illustrates how advances in basic vascular biology may transform therapy. Biomarker-directed application of anti-inflammatory interventions promises to help us achieve a more precise and personalized allocation of therapy for our cardiovascular patients.