CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

Microthrombi As A Major Cause of Cardiac Injury in COVID-19: A Pathologic Study Better Prognosis After Complete Revascularization Using Contemporary Coronary Stents in Patients With Chronic Kidney Disease Optimal Stenting Technique for Complex Coronary Lesions Intracoronary Imaging-Guided Pre-Dilation, Stent Sizing, and Post-Dilation Development and validation of a simple risk score to predict 30-day readmission after percutaneous coronary intervention in a cohort of medicare patients Safety and feasibility of robotic percutaneous coronary intervention: PRECISE (Percutaneous Robotically-Enhanced Coronary Intervention) Study Derivation and Validation of a Chronic Total Coronary Occlusion Intervention Procedural Success Score From the 20,000-Patient EuroCTO Registry:The EuroCTO (CASTLE) Score Radial Versus Femoral Access for Coronary Interventions Across the Entire Spectrum of Patients With Coronary Artery Disease: A Meta-Analysis of Randomized Trials Discharge Against Medical Advice After Percutaneous Coronary Intervention in the United States

Review Article2017 Sep 26;70(13):1618-1636.

JOURNAL:J Am Coll Cardiol. Article Link

Cardiopulmonary Exercise Testing: What Is its Value?

Guazzi M, Bandera F, Ozemek C et al. Keywords: https://www.sciencedirect.com/science/article/pii/S0735109717392501?via%3Dihub

ABSTRACT


Compared with traditional exercise tests, cardiopulmonary exercise testing (CPET) provides a thorough assessment of exercise integrative physiology involving the pulmonary, cardiovascular, muscular, and cellular oxidative systems. Due to the prognostic ability of key variables, CPET applications in cardiology have grown impressively to include all forms of exercise intolerance, with a predominant focus on heart failure with reduced or with preserved ejection fraction. As impaired cardiac output and peripheral oxygen diffusion are the main determinants of the abnormal functional response in cardiac patients, invasive CPET has gained new popularity, especially for diagnosing early heart failure with preserved ejection fraction and exercise-induced pulmonary hypertension. The most impactful advance has recently come from the introduction of CPET combined with echocardiography or CPET imaging, which provides basic information regarding cardiac and valve morphology and function. This review highlights modern CPET use as a single or combined test that allows the pathophysiological bases of exercise limitation to be translated, quite easily, into clinical practice.