CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines Left Ventricular Assist Device as a Bridge to Recovery for Patients With Advanced Heart Failure The Aging Cardiovascular System: Understanding It at the Cellular and Clinical Levels Extracorporeal Ultrafiltration for Fluid Overload in Heart Failure: Current Status and Prospects for Further Research Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series Robotics in percutaneous cardiovascular interventions Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016 2017 ESC Guidelines on the Diagnosis and Treatment of Peripheral Arterial Diseases, in collaboration with the European Society for Vascular Surgery (ESVS): Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries Endorsed

Review Article2017 Sep 26;70(13):1618-1636.

JOURNAL:J Am Coll Cardiol. Article Link

Cardiopulmonary Exercise Testing: What Is its Value?

Guazzi M, Bandera F, Ozemek C et al. Keywords: https://www.sciencedirect.com/science/article/pii/S0735109717392501?via%3Dihub

ABSTRACT


Compared with traditional exercise tests, cardiopulmonary exercise testing (CPET) provides a thorough assessment of exercise integrative physiology involving the pulmonary, cardiovascular, muscular, and cellular oxidative systems. Due to the prognostic ability of key variables, CPET applications in cardiology have grown impressively to include all forms of exercise intolerance, with a predominant focus on heart failure with reduced or with preserved ejection fraction. As impaired cardiac output and peripheral oxygen diffusion are the main determinants of the abnormal functional response in cardiac patients, invasive CPET has gained new popularity, especially for diagnosing early heart failure with preserved ejection fraction and exercise-induced pulmonary hypertension. The most impactful advance has recently come from the introduction of CPET combined with echocardiography or CPET imaging, which provides basic information regarding cardiac and valve morphology and function. This review highlights modern CPET use as a single or combined test that allows the pathophysiological bases of exercise limitation to be translated, quite easily, into clinical practice.