CBS 2019
CBSMD教育中心
中 文

推荐文献

Abstract

Recommended Article

Impact of lesion complexity on peri-procedural adverse events and the benefit of potent intravenous platelet adenosine diphosphate receptor inhibition after percutaneous coronary intervention: core laboratory analysis from 10 854 patients from the CHAMPION PHOENIX trial Screening for Cardiovascular Disease Risk With Electrocardiography: US Preventive Services Task Force Recommendation Statement Advances in Coronary No-Reflow Phenomenon-a Contemporary Review 2019 ESC Guidelines for the management of patients with supraventricular tachycardia The Task Force for the management of patients with supraventricular tachycardia of the European Society of Cardiology (ESC): Developed in collaboration with the Association for European Paediatric and Congenital Cardiology (AEPC)he management of patients with) Microthrombi As A Major Cause of Cardiac Injury in COVID-19: A Pathologic Study Management of two major complications in the cardiac catheterisation laboratory: the no-reflow phenomenon and coronary perforations Transcatheter Mitral-Valve Repair in Patients with Heart Failure Better Prognosis After Complete Revascularization Using Contemporary Coronary Stents in Patients With Chronic Kidney Disease

Review Article2018 May 29. [Epub ahead of print]

JOURNAL:Eur Heart J. Article Link

The performance of non-invasive tests to rule-in and rule-out significant coronary artery stenosis in patients with stable angina: a meta-analysis focused on post-test disease probability

Knuuti J, Ballo H, Juarez-Orozco LE et al. Keywords: modality; non-invasive tests; coronary arterial disease

Abstract


AIMS- To determine the ranges of pre-test probability (PTP) of coronary artery disease (CAD) in which stress electrocardiogram (ECG), stress echocardiography, coronary computed tomography angiography (CCTA), single-photon emission computed tomography (SPECT), positron emission tomography (PET), and cardiac magnetic resonance (CMR) can reclassify patients into a post-testprobability that defines (>85%) or excludes (<15%) anatomically (defined by visual evaluation of invasive coronary angiography [ICA]) and functionally (defined by a fractional flow reserve [FFR] ≤0.8) significant CAD.


METHODS AND RESULTS - A broad search in electronic databases until August 2017 was performed. Studies on the aforementioned techniques in >100 patients with stable CAD that utilized either ICA or ICA with FFR measurement as reference, were included. Study-level data was pooled using a hierarchical bivariate random-effects model and likelihood ratios were obtained for each technique. The PTP ranges for each technique to rule-in or rule-out significant CAD were defined. A total of 28 664 patients from 132 studies that used ICA as reference and 4131 from 23 studies using FFR, were analysed. Stress ECG can rule-in and rule-out anatomically significant CAD only when PTP is ≥80% (76-83) and ≤19% (15-25), respectively. Coronary computed tomography angiography is able to rule-inanatomic CAD at a PTP ≥58% (45-70) and rule-out at a PTP ≤80% (65-94). The corresponding PTP values for functionally significantCAD were ≥75% (67-83) and ≤57% (40-72) for CCTA, and ≥71% (59-81) and ≤27 (24-31) for ICA, demonstrating poorer performance of anatomic imaging against FFR. In contrast, functional imaging techniques (PET, stress CMR, and SPECT) are able to rule-in functionally significant CAD when PTP is ≥46-59% and rule-out when PTP is ≤34-57%.


CONCLUSION- The various diagnostic modalities have different optimal performance ranges for the detection of anatomically and functionally significant CAD. Stress ECG appears to have very limited diagnostic power. The selection of a diagnostic technique for any given patient to rule-in or rule-out CAD should be based on the optimal PTP range for each test and on the assumed reference standard.