CBS 2019
CBSMD教育中心
中 文

IVUS Guidance

Abstract

Recommended Article

The impact of intravascular ultrasound guidance during drug eluting stent implantation on angiographic outcomes Intravascular Ultrasound Guidance vs. Angiographic Guidance in Primary Percutaneous Coronary Intervention for ST-Segment Elevation Myocardial Infarction - Long-Term Clinical Outcomes From the CREDO-Kyoto AMI Registry IVUS in bifurcation stenting: what have we learned? Usefulness of minimum stent cross sectional area as a predictor of angiographic restenosis after primary percutaneous coronary intervention in acute myocardial infarction (from the HORIZONS-AMI Trial IVUS substudy) Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) substudy Intravascular Ultrasound-Derived Virtual Fractional Flow Reserve for the Assessment of Myocardial Ischemia Usefulness of intravascular ultrasound to predict outcomes in short-length lesions treated with drug-eluting stents Clinical impact of PCSK9 inhibitor on stabilization and regression of lipid-rich coronary plaques: a near-infrared spectroscopy study

Original Research2019 Apr 1;123(7):1052-1059.

JOURNAL:Am J Cardiol. Article Link

Intravascular Ultrasound Assessment of In-Stent Restenosis in Saphenous Vein Grafts

Wolny R, Mintz GS, Maehara A et al. Keywords: in-stent restenosis; IVUS; saphenous vein grafts

ABSTRACT


Outcomes after percutaneous coronary interventions (PCI) in saphenous vein grafts (SVG) are inferior compared with native coronary arteries, but the mechanisms of SVG in-stent restenosis (ISR) have not been well-described. Thus, we aimed to evaluate the patterns of SVG ISR using intravascular ultrasound (IVUS) in 54 SVG ISR lesions. Stent underexpansion was defined as minimum stent area (MSA) <5 mm2. The time from stent implantation to presentation with ISR (9 BMS, 18 first-generation DES, and 27 second-generation DES) was 3.7 ± 3.0 years. IVUS-defined ISR patterns were categorized as mechanical (33%) or biological (67%). Mechanical patterns comprised 10 cases of stent underexpansion (MSA = 4.2 ± 0.9 mm2), 6 stent fractures or deformations, and 2 uncovered aorto-anastomotic lesions. Biological patterns comprised 19 cases of neoatherosclerosis, 13 excessive neointimal hyperplasia (NIH, 65 ± 11%), and 4 thrombi. Compared with biological patterns of ISR, mechanical patterns were more frequently located at the SVG anastomosis (72% vs 39%, p = 0.04) and at the SVG hinge motion site (55% vs 21%, p = 0.02). Although patients with mechanical patterns of ISR presented earlier than those with biological patterns (2.3 vs 4.4 years, p = 0.009), 61% of them were diagnosed >1 year after stent implantation. In conclusion, SVG ISR is dominated by biological patterns including neoatherosclerosis. Mechanical patterns of SVG ISR are associated with earlier presentation and location at graft anastomosis or hinge motion site.