CBS 2019
CBSMD教育中心
中 文

IVUS Guidance

Abstract

Recommended Article

Use of Intravascular Ultrasound Imaging in Percutaneous Coronary Intervention to Treat Left Main Coronary Artery Disease Outcomes with intravascular ultrasound-guided stent implantation: a meta-analysis of randomized trials in the era of drug-eluting stents Imaging- and physiology-guided percutaneous coronary intervention without contrast administration in advanced renal failure: a feasibility, safety, and outcome study Clinical impact of intravascular ultrasound-guided chronic total occlusion intervention with zotarolimus-eluting versus biolimus-eluting stent implantation: randomized study A prospective, randomized trial of intravascular-ultrasound guided compared to angiography guided stent implantation in complex coronary lesions: the AVIO trial The role of integrated backscatter intravascular ultrasound in characterizing bare metal and drug-eluting stent restenotic neointima as compared to optical coherence tomography Intravascular ultrasound-guided percutaneous coronary intervention improves the clinical outcome in patients undergoing multiple overlapping drug-eluting stents implantation Intravascular ultrasound predictors of angiographic restenosis after sirolimus-eluting stent implantation

Original Research2019 Apr 1;123(7):1052-1059.

JOURNAL:Am J Cardiol. Article Link

Intravascular Ultrasound Assessment of In-Stent Restenosis in Saphenous Vein Grafts

Wolny R, Mintz GS, Maehara A et al. Keywords: in-stent restenosis; IVUS; saphenous vein grafts

ABSTRACT


Outcomes after percutaneous coronary interventions (PCI) in saphenous vein grafts (SVG) are inferior compared with native coronary arteries, but the mechanisms of SVG in-stent restenosis (ISR) have not been well-described. Thus, we aimed to evaluate the patterns of SVG ISR using intravascular ultrasound (IVUS) in 54 SVG ISR lesions. Stent underexpansion was defined as minimum stent area (MSA) <5 mm2. The time from stent implantation to presentation with ISR (9 BMS, 18 first-generation DES, and 27 second-generation DES) was 3.7 ± 3.0 years. IVUS-defined ISR patterns were categorized as mechanical (33%) or biological (67%). Mechanical patterns comprised 10 cases of stent underexpansion (MSA = 4.2 ± 0.9 mm2), 6 stent fractures or deformations, and 2 uncovered aorto-anastomotic lesions. Biological patterns comprised 19 cases of neoatherosclerosis, 13 excessive neointimal hyperplasia (NIH, 65 ± 11%), and 4 thrombi. Compared with biological patterns of ISR, mechanical patterns were more frequently located at the SVG anastomosis (72% vs 39%, p = 0.04) and at the SVG hinge motion site (55% vs 21%, p = 0.02). Although patients with mechanical patterns of ISR presented earlier than those with biological patterns (2.3 vs 4.4 years, p = 0.009), 61% of them were diagnosed >1 year after stent implantation. In conclusion, SVG ISR is dominated by biological patterns including neoatherosclerosis. Mechanical patterns of SVG ISR are associated with earlier presentation and location at graft anastomosis or hinge motion site.