CBS 2019
CBSMD教育中心
中 文

DAPT Duration

Abstract

Recommended Article

Stopping or continuing clopidogrel 12 months after drug-eluting stent placement: the OPTIDUAL randomized trial ISAR-SAFE: a randomized, double-blind, placebo-controlled trial of 6 vs. 12 months of clopidogrel therapy after drug-eluting stenting 6-month versus 12-month or longer dual antiplatelet therapy after percutaneous coronary intervention in patients with acute coronary syndrome (SMART-DATE): a randomised, open-label, non-inferiority trial Second-generation drug-eluting stent implantation followed by 6- versus 12-month dual antiplatelet therapy: the SECURITY randomized clinical trial Cost-Effectiveness of Different Durations of Dual-Antiplatelet Use After Percutaneous Coronary Intervention 6-Month Versus 12-Month Dual-Antiplatelet Therapy Following Long Everolimus-Eluting Stent Implantation: The IVUS-XPL Randomized Clinical Trial Rationale and design of a prospective substudy of clinical endpoint adjudication processes within an investigator-reported randomised controlled trial in patients with coronary artery disease: the GLOBAL LEADERS Adjudication Sub-StudY (GLASSY) Individualized antiplatelet therapy after drug-eluting stent deployment: Implication of clinical trials of different durations of dual antiplatelet therapy

Original Research2020 Jul 4;S0002-9297(20)30196-8.

JOURNAL:Am J Hum Genet. Article Link

A Platelet Function Modulator of Thrombin Activation Is Causally Linked to Cardiovascular Disease and Affects PAR4 Receptor Signaling

BAT Rodriguez, A Bhan, A Beswick et al. Keywords: Cardiovascular Disease; GWAS; PAR-4; eQTL; platelets; regulatory; stroke; thrombin; thrombosis; venous thromboembolism.

ABSTRACT


Dual antiplatelet therapy reduces ischemic events in cardiovascular disease, but it increases bleeding risk. Thrombin receptors PAR1 and PAR4 are drug targets, but the role of thrombin in platelet aggregation remains largely unexplored in large populations. We performed a genome-wide association study (GWAS) of platelet aggregation in response to full-length thrombin, followed by clinical association analyses, Mendelian randomization, and functional characterization including iPSC-derived megakaryocyte and platelet experiments. We identified a single sentinel variant in the GRK5 locus (rs10886430-G, p = 3.0 × 10-42) associated with increased thrombin-induced platelet aggregation (β = 0.70, SE = 0.05). We show that disruption of platelet GRK5 expression by rs10886430-G is associated with enhanced platelet reactivity. The proposed mechanism of a GATA1-driven megakaryocyte enhancer is confirmed in allele-specific experiments. Utilizing further data, we demonstrate that the allelic effect is highly platelet- and thrombin-specific and not likely due to effects on thrombin levels. The variant is associated with increased risk of cardiovascular disease outcomes in UK BioBank, most strongly with pulmonary embolism. The variant associates with increased risk of stroke in the MEGASTROKE, UK BioBank, and FinnGen studies. Mendelian randomization analyses in independent samples support a causal role for rs10886430-G in increasing risk for stroke, pulmonary embolism, and venous thromboembolism through its effect on thrombin-induced platelet reactivity. We demonstrate that G protein-coupled receptor kinase 5 (GRK5) promotes platelet activation specifically via PAR4 receptor signaling. GRK5 inhibitors in development for the treatment of heart failure and cancer could have platelet off-target deleterious effects. Common variants in GRK5 may modify clinical outcomes with PAR4 inhibitors, and upregulation of GRK5 activity or signaling in platelets may have therapeutic benefits.