CBS 2019
CBSMD教育中心
中 文

左主干支架

Abstract

Recommended Article

Bayesian Interpretation of the EXCEL Trial and Other Randomized Clinical Trials of Left Main Coronary Artery Revascularization Optimizing outcomes during left main percutaneous coronary intervention with intravascular ultrasound and fractional flow reserve: the current state of evidence Incidence and Management of Restenosis After Treatment of Unprotected Left Main Disease With Second-Generation Drug-Eluting Stents (from Failure in Left Main Study With 2nd Generation Stents-Cardiogroup III Study) Revascularization of left main coronary artery 10-Year Outcomes of Stents Versus Coronary Artery Bypass Grafting for Left Main Coronary Artery Disease EXCELling in Left Main Intervention Long-Term Clinical Outcomes and Optimal Stent Strategy in Left Main Coronary Bifurcation Stenting Left Main Revascularization in 2017: Coronary Artery Bypass Grafting or Percutaneous Coronary Intervention?

Clinical TrialFirst Online 19 June 2017

JOURNAL:Int J Cardiovasc Imaging. Article Link

Stent fracture is associated with a higher mortality in patients with type-2 diabetes treated by implantation of a second-generation drug-eluting stent

Z Ge, ZZ Liu, SL Chen et al. Keywords: type 2 diabetes; drug-eluting stent; stent fracture

ABSTRACT

Type 2 diabetes correlates with clinical events after the implantation of a second-generation drug-eluting stent (DES). The rate and prognostic value of stent fracture (SF) in patients with diabetes who underwent DES implantation remain unknown. A total of 1160 patients with- and 2251 without- diabetes, who underwent surveillance angiography at 1 year after DES implantation between June 2004 and August 2014, were prospectively studied. The primary endpoints included the incidence of SF and a composite major adverse cardiac event [MACE, including myocardial infarction (MI), cardiac death, and target-vessel revascularization (TVR)] at 1-year follow-up and at the end of follow-up for overall patients, and target lesion failure [TLF, including cardiac death, target vessel myocardial infarction (TVMI) and target lesion revascularization (TLR)] at the end of study for SF patients. In general, diabetes was associated with a higher rate of MACE at 1-year (18.4 vs. 12.9%) and end of follow-up (24.0 vs. 18.6%, all p < 0.001), compared with those in patients who did not have diabetes. The 1-year SF rate was comparable among patients with diabetes (n = 153, 13.2%) and non-diabetic patients (n = 273, 12.1%, p > 0.05). Diabetic patients with SF had a 2.6-fold increase of SF-related cardiac death at the end of study and threefold increase of re-repeat TLR when compared with non-diabetic patients with SF (5.9 vs. 2.2%, p = 0.040; 6.5 vs. 2.2%, p = 0.032), respectively. Given the fact that diabetes is correlated with increased MACE rate, SF in diabetic patients translates into differences in mortality and re-repeat TLR compared with the non-diabetic group.