CBS 2019
CBSMD教育中心
中 文

血管内超声指导

Abstract

Recommended Article

Does calcium burden impact culprit lesion morphology and clinical results? An ADAPT-DES IVUS substudy Intraluminal Intensity of Blood Speckle on Intravascular Ultrasound, a Novel Predictor of Periprocedural Myocardial Injury After Coronary Stenting Subclinical Atherosclerosis Burden by 3D Ultrasound in Mid-Life: The PESA Study Intravascular ultrasound-guided drug-eluting stent implantation is associated with improved clinical outcomes in patients with unstable angina and complex coronary artery true bifurcation lesions The outcomes of intravascular ultrasound-guided drug-eluting stent implantation among patients with complex coronary lesions: a comprehensive meta-analysis of 15 clinical trials and 8,084 patients Impact of the complexity of bifurcation lesions treated with drug-eluting stents: the DEFINITION study (Definitions and impact of complEx biFurcation lesIons on clinical outcomes after percutaNeous coronary IntervenTIOn using drug-eluting steNts) Use of Intravascular Ultrasound Imaging in Percutaneous Coronary Intervention to Treat Left Main Coronary Artery Disease In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis

Original Research2011 Dec 1;108(11):1547-51.

JOURNAL:Am J Cardiol. Article Link

Histopathologic validation of the intravascular ultrasound diagnosis of calcified coronary artery nodules

Lee JB, Mintz GS, Lisauskas JB et al. Keywords: calcified nodule; features; vulnerable plaque; intravascular ultrasound

ABSTRACT


A calcified nodule is a type of potentially vulnerable plaque accounting for approximately 2% to 7% of coronary events. Because its intravascular ultrasound (IVUS) features have never been validated, the aim of this study was to assess the IVUS characteristics of calcified nodules in comparison to histopathology. IVUS was performed in 856 pathologic slices in 29 coronary arteries (11 left anterior descending, 5 left circumflex, and 13 right coronary arteries) in 18 autopsy hearts. Pathologic sections were analyzed every 2 mm; qualitative and quantitative findings of matched IVUS were analyzed. IVUS detected calcification in 285 frames; 17 (6.0%) were calcified nodules, and 268 (94.0%) were non-nodular calcium by histopathology. Two calcified nodules (11.8%) were solitary, and 15 (88.2%) were adjacent to non-nodular calcium. IVUS characteristics of calcified nodules were (1) a convex shape of the luminal surface (94.1% in calcified nodules vs 9.7% in non-nodular calcium, p <0.001), (2) a convex shape of the luminal side of calcium (100% vs 16.0%, p <0.001), (3) an irregular luminal surface (64.7% vs 11.6%, p <0.001), and (4) an irregular leading edge of calcium (88.2% vs 19.0%, p <0.001). Luminal area at the calcified nodule site was larger (6.2 ± 2.4 vs 4.3 ± 1.6 mm(2), p <0.001) and plaque burden less (57 ± 6% vs 68 ± 5%, p <0.001) than at the minimum luminal area site. In conclusion, calcified nodules have distinct IVUS features (irregular and convex luminal surface) permitting their prospective identification in vivo.