CBS 2019
CBSMD教育中心
中 文

血管内超声指导

Abstract

Recommended Article

Intravascular ultrasound guidance of percutaneous coronary intervention in ostial chronic total occlusions: a description of the technique and procedural results IVUS Guidance Is Associated With Better Outcome in Patients Undergoing Unprotected Left Main Coronary Artery Stenting Compared With Angiography Guidance Alone Optical coherence tomography is a kid on the block: I would choose intravascular ultrasound Intravascular ultrasound-guided percutaneous coronary intervention in left main coronary bifurcation lesions: a review Successful Treatment of Unprotected Left Main Coronary Bifurcation Lesion Using Minimum Contrast Volume with Intravascular Ultrasound Guidance Intravascular ultrasound guidance in drug-eluting stents implantation: a meta-analysis and trial sequential analysis of randomized controlled trials Clinical Outcomes Following Intravascular Imaging-Guided Versus Coronary Angiography–Guided Percutaneous Coronary Intervention With Stent Implantation: A Systematic Review and Bayesian Network Meta-Analysis of 31 Studies and 17,882 Patients In Vivo Calcium Detection by Comparing Optical Coherence Tomography, Intravascular Ultrasound, and Angiography

Original Research2006 Jun;27(11):1305-10.

JOURNAL:Eur Heart J. Article Link

Intravascular ultrasound predictors of angiographic restenosis after sirolimus-eluting stent implantation

Hong MK, Mintz GS, Lee CW et al. Keywords: post-procedural final minimum stent area; IVUS; sirolimus-eluting stent; angiographic restenosis; stent length

ABSTRACT

 

AIMS - In many countries, drug-eluting stent implantation is the dominant interventional strategy. We evaluated the clinical, angiographic, procedural, and intravascular ultrasound (IVUS) predictors of angiographic restenosis after sirolimus-eluting stent (SES) implantation.

 

METHODS AND RESULTS - SES implantation was successfully performed in 550 patients with 670 native coronary lesions. Six-month follow-up angiography was performed in 449 patients (81.6%) with 543 lesions (81.1%). Clinical, angiographic, procedural, and IVUS predictors of restenosis were determined. Using multivariable logistic regression analysis, the only independent predictors of angiographic restenosis were post-procedural final minimum stent area by IVUS [odds ratio (OR)=0.586, 95% confidence interval (CI) 0.387-0.888, P=0.012] and IVUS-measured stent length (OR=1.029, 95% CI 1.002-1.056, P=0.035). Final minimum stent area by IVUS and IVUS-measured stent length that best separated restenosis from non-restenosis were 5.5 mm2 and 40 mm, respectively. Lesions with final minimum stent area<5.5 mm2 and stent length>40 mm had the highest rate of angiographic restenosis [17.7% (11/62)], P<0.001 compared with other groups.

 

CONCLUSION - Independent predictors of angiographic restenosis after SES implantation were post-procedural final minimum stent area by IVUS and IVUS-measured stent length. The angiographic restenosis rate was highest in lesions with stent area<5.5 mm2 and stent length>40 mm.