CBS 2019
CBSMD教育中心
中 文

血管内超声指导

Abstract

Recommended Article

Intravascular ultrasound findings of early stent thrombosis after primary percutaneous intervention in acute myocardial infarction: a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction (HORIZONS-AMI) substudy The Role of Vascular Imaging in Guiding Routine Percutaneous Coronary Interventions: A Meta-Analysis of Bare Metal Stent and Drug-Eluting Stent Trials Impact of plaque components on no-reflow phenomenon after stent deployment in patients with acute coronary syndrome: a virtual histology-intravascular ultrasound analysis The relationship between attenuated plaque identified by intravascular ultrasound and no-reflow after stenting in acute myocardial infarction: the HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) trial Meta-analysis of outcomes after intravascular ultrasound-guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies Intravascular Ultrasound Guidance Reduces Cardiac Death and Coronary Revascularization in Patients Undergoing Drug-Eluting Stent Implantation: Results From a Meta-Analysis of 9 Randomized Trials and 4724 Patients Intravascular Ultrasound Guidance Is Associated With Better Outcome in Patients Undergoing Unprotected Left Main Coronary Artery Stenting Compared With Angiography Guidance Alone Comprehensive intravascular ultrasound assessment of stent area and its impact on restenosis and adverse cardiac events in 403 patients with unprotected left main disease

Original Research2019 Apr 1;123(7):1052-1059.

JOURNAL:Am J Cardiol. Article Link

Intravascular Ultrasound Assessment of In-Stent Restenosis in Saphenous Vein Grafts

Wolny R, Mintz GS, Maehara A et al. Keywords: in-stent restenosis; IVUS; saphenous vein grafts

ABSTRACT


Outcomes after percutaneous coronary interventions (PCI) in saphenous vein grafts (SVG) are inferior compared with native coronary arteries, but the mechanisms of SVG in-stent restenosis (ISR) have not been well-described. Thus, we aimed to evaluate the patterns of SVG ISR using intravascular ultrasound (IVUS) in 54 SVG ISR lesions. Stent underexpansion was defined as minimum stent area (MSA) <5 mm2. The time from stent implantation to presentation with ISR (9 BMS, 18 first-generation DES, and 27 second-generation DES) was 3.7 ± 3.0 years. IVUS-defined ISR patterns were categorized as mechanical (33%) or biological (67%). Mechanical patterns comprised 10 cases of stent underexpansion (MSA = 4.2 ± 0.9 mm2), 6 stent fractures or deformations, and 2 uncovered aorto-anastomotic lesions. Biological patterns comprised 19 cases of neoatherosclerosis, 13 excessive neointimal hyperplasia (NIH, 65 ± 11%), and 4 thrombi. Compared with biological patterns of ISR, mechanical patterns were more frequently located at the SVG anastomosis (72% vs 39%, p = 0.04) and at the SVG hinge motion site (55% vs 21%, p = 0.02). Although patients with mechanical patterns of ISR presented earlier than those with biological patterns (2.3 vs 4.4 years, p = 0.009), 61% of them were diagnosed >1 year after stent implantation. In conclusion, SVG ISR is dominated by biological patterns including neoatherosclerosis. Mechanical patterns of SVG ISR are associated with earlier presentation and location at graft anastomosis or hinge motion site.