CBS 2019
CBSMD教育中心
中 文

血管内超声指导

Abstract

Recommended Article

Usefulness of intravascular ultrasound guidance in percutaneous coronary intervention with second-generation drug-eluting stents for chronic total occlusions (from the Multicenter Korean-Chronic Total Occlusion Registry) In-stent neoatherosclerosis: a final common pathway of late stent failure Is intravascular ultrasound beneficial for percutaneous coronary intervention of bifurcation lesions? Evidence from a 4,314-patient registry Coronary plaque redistribution after stent implantation is determined by lipid composition: A NIRS-IVUS analysis Intravascular Ultrasound Assessment of In-Stent Restenosis in Saphenous Vein Grafts Relation between baseline plaque features and subsequent coronary artery remodeling determined by optical coherence tomography and intravascular ultrasound Intravascular Ultrasound and Angioscopy Assessment of Coronary Plaque Components in Chronic Totally Occluded Lesions Increased glycated albumin and decreased esRAGE levels in serum are related to negative coronary artery remodeling in patients with type 2 diabetes: an Intravascular ultrasound study

Clinical Trial2011 Dec 1;4(6):562-9.

JOURNAL:Circ Cardiovasc Interv. Article Link

Comprehensive intravascular ultrasound assessment of stent area and its impact on restenosis and adverse cardiac events in 403 patients with unprotected left main disease

Kang SJ, Ahn JM, Song H et al. Keywords: stent; imaging; diagnostic coronary restenosis

ABSTRACT


BACKGROUND - We assessed the optimal intravascular ultrasound (IVUS) stent area to predict angiographic in-stent restenosis (ISR) after sirolimus-eluting stent implantation for unprotected left main coronary artery (LM) disease.


METHODS AND RESULTS - A total of 403 patients treated with single- or 2-stent strategies (crushing and T-stent) had immediate poststenting IVUS and 9-month follow-up angiography. Poststenting minimal stent area (MSA) was measured in each of 4 segments: ostial left anterior descending (LAD), ostial left circumflex (LCX) polygon of confluence (POC, confluence zone of LAD and LCX), and proximal LM above the POC. Overall, 46 (11.4%) showed angiographic restenosis at 9 months: 3 of 67 (4.5%) nonbifurcation lesions treated with a single-stent, 14 of 222 (6.3%) bifurcation lesions treated with single-stent crossover, and 29 of 114 (25.4%) of bifurcation lesions treated with 2 stents. The MSA cutoffs that best predicted ISR on a segmental basis were 5.0 mm(2) (ostial LCX ISR), 6.3 mm(2) (ostial LAD ISR), 7.2 mm(2) (ISR within the POC), and 8.2 mm(2) (ISR within the LM above the POC). Using these criteria, 133 (33.8%) had underexpansion of at least 1 segment. Angiographic ISR (at any location) was more frequent in lesions with underexpansion of at least 1 segment versus lesions with no underexpansion (24.1% versus 5.4%, P<0.001). Two-year major adverse coronary event-free survival rate was significantly lower in patients with underexpansion of at least 1 segment versus lesions with no underexpansion (90±3% versus 98±1%, log-rank P<0.001), and poststenting underexpansion was an independent predictor for major adverse cardiac events (adjusted hazard ratio, 5.56; 95% confidence interval, 1.99-15.49; P=0.001).

CONCLUSIONS - With these criteria, IVUS optimization during LMCA stenting procedures may improve clinical outcomes.