CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Percutaneous coronary intervention reduces mortality in myocardial infarction patients with comorbidities: Implications for elderly patients with diabetes or kidney disease Association of Thrombus Aspiration With Time and Mortality Among Patients With ST-Segment Elevation Myocardial Infarction: A Post Hoc Analysis of the Randomized TOTAL Trial Association of the PHACTR1/EDN1 Genetic Locus With Spontaneous Coronary Artery Dissection Outcomes of off- and on-hours admission in ST-segment elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: A retrospective observational cohort study Location of the culprit coronary lesion and its association with delay in door-to-balloon time (from a multicenter registry of primary percutaneous coronary intervention) Efficacy of High-Sensitivity Troponin T in Identifying Very-Low-Risk Patients With Possible Acute Coronary Syndrome Door-to-balloon time and mortality among patients undergoing primary PCI Comparison of Inhospital Mortality and Frequency of Coronary Angiography on Weekend Versus Weekday Admissions in Patients With Non-ST-Segment Elevation Acute Myocardial Infarction

Clinical TrialVolume 39, Issue 29, 1 August 2018, Pages 2730–2739

JOURNAL:Eur Heart J. Article Link

Oxygen therapy in ST-elevation myocardial infarction

R Hofmann, N Witt, B Lagerqvist et al. Keywords: Oxygen;ST-elevation myocardial infarction;Percutaneous coronary intervention; Registry-based randomized clinical trial;Reactive oxygen species;Reperfusion injury

ABSTRACT



AIMS - To determine whether supplemental oxygen in patients with ST-elevation myocardial infarction (STEMI) impacts on procedure-related and clinical outcomes.


METHODS AND RESULTS - The DETermination of the role of Oxygen in suspected Acute Myocardial Infarction (DETO2X-AMI) trial randomized patients with suspected myocardial infarction (MI) to receive oxygen at 6 L/min for 6–12 h or ambient air. In this pre-specified analysis, we included only STEMI patients who underwent percutaneous coronary intervention (PCI). In total, 2807 patients were included, 1361 assigned to receive oxygen, and 1446 assigned to ambient air. The pre-specified primary composite endpoint of all-cause death, rehospitalization with MI, cardiogenic shock, or stent thrombosis at 1 year occurred in 6.3% (86 of 1361) of patients allocated to oxygen compared to 7.5% (108 of 1446) allocated to ambient air [hazard ratio (HR) 0.85, 95% confidence interval (95% CI) 0.64–1.13; P= 0.27]. There was no difference in the rate of death from any cause (HR 0.86, 95% CI 0.61–1.22; P= 0.41), rate of rehospitalization for MI (HR 0.92, 95% CI 0.57–1.48; P= 0.73), rehospitalization for cardiogenic shock (HR 1.05, 95% CI 0.21–5.22; P= 0.95), or stent thrombosis (HR 1.27, 95% CI 0.46–3.51; P= 0.64). The primary composite endpoint was consistent across all subgroups, as well as at different time points, such as during hospital stay, at 30 days and the total duration of follow-up up to 1356 days.


CONCLUSION - Routine use of supplemental oxygen in normoxemic patients with STEMI undergoing primary PCI did not significantly affect 1-year all-cause death, rehospitalization with MI, cardiogenic shock, or stent thrombosis.