CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): final 12 month results of a randomised, open-label trial Optimal medical therapy vs. coronary revascularization for patients presenting with chronic total occlusion: A meta-analysis of randomized controlled trials and propensity score adjusted studies Post-Discharge Bleeding and Mortality Following Acute Coronary Syndromes With or Without PCI Effects of clopidogrel vs. prasugrel vs. ticagrelor on endothelial function, inflammatory parameters, and platelet function in patients with acute coronary syndrome undergoing coronary artery stenting: a randomized, blinded, parallel study Acute Coronary Syndrome Following Transcatheter Aortic Valve Replacement Myocardial infarction with non-obstructive coronary arteries as compared with myocardial infarction and obstructive coronary disease: outcomes in a Medicare population Switching P2Y12-receptor inhibitors in patients with coronary artery disease Intensive Care Utilization in Stable Patients With ST-Segment Elevation Myocardial Infarction Treated With Rapid Reperfusion

Clinical TrialAugust 25, 2018

JOURNAL:NEJM. Article Link

Coronary CT Angiography and 5-Year Risk of Myocardial Infarction

The SCOT-HEART Investigators. Keywords: Coronary computer angiography; hard cardiac events; myocardial infarction; prevention

ABSTRACT


BACKGROUND - Although coronary computed tomographic angiography (CTA) improves diagnostic certainty in the assessment of patients with stable chest pain, its effect on 5-year clinical outcomes is unknown.

METHODS - In an open-label, multicenter, parallel-group trial, we randomly assigned 4146 patients with stable chest pain who had been referred to a cardiology clinic for evaluation to standard care plus CTA (2073 patients) or to standard care alone (2073 patients). Investigations, treatments, and clinical outcomes were assessed over 3 to 7 years of follow-up. The primary end point was death from coronary heart disease or nonfatal myocardial infarction at 5 years.

RESULTS - The median duration of follow-up was 4.8 years, which yielded 20,254 patient-years of follow-up. The 5-year rate of the primary end point was lower in the CTA group than in the standard-care group (2.3% [48 patients] vs. 3.9% [81 patients]; hazard ratio, 0.59; 95% confidence interval [CI], 0.41 to 0.84; P=0.004). Although the rates of invasive coronary angiography and coronary revascularization were higher in the CTA group than in the standard-care group in the first few months of follow-up, overall rates were similar at 5 years: invasive coronary angiography was performed in 491 patients in the CTA group and in 502 patients in the standard-care group (hazard ratio, 1.00; 95% CI, 0.88 to 1.13), and coronary revascularization was performed in 279 patients in the CTA group and in 267 in the standard-care group (hazard ratio, 1.07; 95% CI, 0.91 to 1.27). However, more preventive therapies were initiated in patients in the CTA group (odds ratio, 1.40; 95% CI, 1.19 to 1.65), as were more antianginal therapies (odds ratio, 1.27; 95% CI, 1.05 to 1.54). There were no significant between-group differences in the rates of cardiovascular or noncardiovascular deaths or deaths from any cause.

CONCLUSIONS - In this trial, the use of CTA in addition to standard care in patients with stable chest pain resulted in a significantly lower rate of death from coronary heart disease or nonfatal myocardial infarction at 5 years than standard care alone, without resulting in a significantly higher rate of coronary angiography or coronary revascularization. (Funded by the Scottish Government Chief Scientist Office and others; SCOT-HEART ClinicalTrials.gov number, NCT01149590.)