CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

The Potential Use of the Index of Microcirculatory Resistance to Guide Stratification of Patients for Adjunctive Therapy in Acute Myocardial Infarction Coronary Angiography in Patients With Out-of-Hospital Cardiac Arrest Without ST-Segment Elevation: A Systematic Review and Meta-Analysis Subcutaneous Selatogrel Inhibits Platelet Aggregation in Patients With Acute Myocardial Infarction Healed Culprit Plaques in Patients With Acute Coronary Syndromes Evaluation and Management of Nonculprit Lesions in STEMI Short Sleep Duration, Obstructive Sleep Apnea, Shiftwork, and the Risk of Adverse Cardiovascular Events in Patients After an Acute Coronary Syndrome TACIT (High Sensitivity Troponin T Rules Out Acute Cardiac Insufficiency Trial): An Observational Study to Identify Acute Heart Failure Patients at Low Risk for Rehospitalization or Mortality ST-Segment Elevation Myocardial Infarction Patients in the Coronary Care Unit Is it Time to Break Old Habits?

Original ResearchJune 2019 DOI: 10.1016/j.jcmg.2019.02.028

JOURNAL:JACC: Cardiovascular Imaging Article Link

5-Year Prognostic Value of Quantitative Versus Visual MPI in Subtle Perfusion Defects: Results From REFINE SPECT

Y Otaki, J Betancur, T Sharir et al. Keywords: prognostic value; SPECT; visual MPI; stress total perfusion deficit; MACE

ABSTRACT

OBJECTIVES- This study compared the ability of automated myocardial perfusion imaging analysis to predict major adverse cardiac events (MACE) to that of visual analysis.

 

BACKGROUND- Quantitative analysis has not been compared with clinical visual analysis in prognostic studies.

 

METHODS- A total of 19,495 patients from the multicenter REFINE SPECT (REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT) study (64 ± 12 years of age, 56% males) undergoing stress Tc-99m-labeled single-photon emission computed tomography (SPECT) myocardial perfusion imaging were followed for 4.5 ± 1.7 years for MACE. Perfusion abnormalities were assessed visually and categorized as normal, probably normal, equivocal, or abnormal. Stress total perfusion deficit (TPD), quantified automatically, was categorized as TPD = 0%, TPD >0% to <1%, 1% to <3%, 3% to <5%, 5% to 10%, or TPD >10%. MACE consisted of death, nonfatal myocardial infarction, unstable angina, or late revascularization (>90 days). Kaplan-Meier and Cox proportional hazards analyses were performed to test the performance of visual and quantitative assessments in predicting MACE.

 

RESULTS - During follow-up examinations, 2,760 (14.2%) MACE occurred. MACE rates increased with worsening of visual assessments, that is, the rate for normal MACE was 2.0%, 3.2% for probably normal, 4.2% for equivocal, and 7.4% for abnormal (all p < 0.001). MACE rates increased with increasing stress TPD from 1.3% for the TPD category of 0% to 7.8% for the TPD category of >10% (p < 0.0001). The adjusted hazard ratio (HR) for MACE increased even in equivocal assessment (HR: 1.56; 95% confidence interval [CI]: 1.37 to 1.78) and in the TPD category of 3% to <5% (HR: 1.74; 95% CI: 1.41 to 2.14; all p < 0.001). The rate of MACE in patients visually assessed as normal still increased from 1.3% (TPD = 0%) to 3.4% (TPD 5%) (p < 0.0001).

 

CONCLUSIONS - Quantitative analysis allows precise granular risk stratification in comparison to visual reading, even for cases with normal clinical reading.