CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction Analysis of reperfusion time trends in patients with ST-elevation myocardial infarction across New York State from 2004 to 2012 A case of influenza type a myocarditis that presents with ST elevation MI, cardiogenic shock, acute renal failure, and rhabdomyolysis and with rapid recovery after treatment with oseltamivir and intra-aortic balloon pump support Outcome of patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention during on- versus off-hours (a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial substudy) Relationship between therapeutic effects on infarct size in acute myocardial infarction and therapeutic effects on 1-year outcomes: A patient-level analysis of randomized clinical trials Cardiovascular Risk and Statin Eligibility of Young Adults After an MI: Partners YOUNG-MI Registry Acute Myocardial Infarction after Laboratory-Confirmed Influenza Infection Age-specific gender differences in early mortality following ST-segment elevation myocardial infarction in China

Original ResearchVolume 12, Issue 6, June 2019

JOURNAL:JACC: Cardiovascular Imaging Article Link

Association Between Haptoglobin Phenotype and Microvascular Obstruction in Patients With STEMI: A Cardiac Magnetic Resonance Study

G Pontone, D Andreini, AI Guaricci et al. Keywords: cardiac magnetic resonance; haptoglobin; microvascular obstruction; myocardial infarction

ABSTRACT


OBJECTIVES - This study aimed to evaluate the correlation between different haptoglobin (Hp) phenotypes and myocardial infarction characteristics as detected by cardiac magnetic resonance (CMR) in consecutive patients after ST-segment elevation myocardial infarction (STEMI).

 

BACKGROUND - Hp is a plasma protein that prevents iron-mediated oxidative tissue damage. CMR has emerged as the gold standard technique to detect left ventricular ejection fraction (LVEF), extent of scar with late gadolinium enhancement (LGE) technique, microvascular obstruction (MVO), and myocardial hemorrhage (MH) in patients with STEMI treated by primary percutaneous coronary intervention (pPCI).

 

METHODS - A total of 145 consecutive STEMI patients (mean age 62.2 ± 10.3 years; 78% men) were prospectively enrolled and underwent Hp phenotyping and CMR assessment within 1 week after STEMI.

 

RESULTS - CMR showed an area at risk (AAR) involving 26.6 ± 19.1% of left ventricular (LV) mass with a late LGE extent of 15.2 ± 13.1% of LV mass. MVO and MH occurred in 38 (26%) and 12 (8%) patients, respectively. Hp phenotypes 1-1, 2-1, 2-2 were observed in 15 (10%), 62 (43%), and 68 (47%), respectively. Multivariable analysis demonstrated that body mass index, Hp2-2, diabetes, and peak troponin I were independent predictors of MVO with Hp2-2 associated with the highest odds ratio (OR) (OR: 5.5 [95% confidence interval [CI]: 2.1 to 14.3; p < 0.001]). Hp2-2 significantly predicted both the presence (area under the curve [AUC]: 0.63 [95% CI: 0.53 to 0.72; p = 0.008]) and extent of MVO (AUC: 0.63 [95% CI: 0.54 to 0.72; p = 0.007]).

 

CONCLUSIONS - Hp phenotype is an independent predictor of MVO. Therefore, Hp phenotyping could be used for risk stratification and may be useful in assessing new therapies to reduce myocardial reperfusion injury in patients with STEMI.