CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Remote ischaemic conditioning and healthcare system delay in patients with ST-segment elevation myocardial infarction Cardiac Troponin Elevation in Patients Without a Specific Diagnosis Effect of Shorter Door-to-Balloon Times Over 20 Years on Outcomes of Patients With Anterior ST-Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention Respiratory syncytial virus infection and risk of acute myocardial infarction 1-Year Outcomes of Delayed Versus Immediate Intervention in Patients With Transient ST-Segment Elevation Myocardial Infarction Frequency of nonsystem delays in ST-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention and implications for door-to-balloon time reporting (from the American Heart Association Mission: Lifeline program) Effect of improved door-to-balloon time on clinical outcomes in patients with ST segment elevation myocardial infarction Wearable Cardioverter-Defibrillator after Myocardial Infarction

Original Research2020 Jul 4;S0167-5273(20)33445-8.

JOURNAL:Int J Cardiol . Article Link

The Prognostic Significance of Periprocedural Infarction in the Era of Potent Antithrombotic Therapy: The PRAGUE-18 Substudy

J Dusek, Z Motovska, Prague-18 Study Group et al. Keywords: AMI; periprocedural MI; pPCI; prognosis

ABSTRACT

BACKGROUND - The prognostic significance of periprocedural myocardial infarction (MI) remains controversial.


METHODS AND RESULTS - The study aims to investigate the incidence of periprocedural MI in the era of high sensitivity diagnostic markers and intense antithrombotics, and its impact on early outcomes of patients with acute MI treated with primary angioplasty (pPCI). Data from the PRAGUE-18 (prasugrel versus ticagrelor in pPCI) study were analyzed. The primary net-clinical endpoint (EP) included death, spontaneous MI, stroke, severe bleeding, and revascularization at day 7. The key secondary efficacy EP included cardiovascular death, spontaneous MI, and stroke within 30 days. The incidence of peri-pPCI MI was 2.3% (N = 28) in 1230 study patients. The net-clinical EP occurred in 10.7% of patients with, and in 3.6% of patients without, peri-pPCI MI (HR 2.92; 95% CI 0.91-9.38; P = 0.059). The key efficacy EP was 10.7% and 3.2%, respectively (HR 3.44; 95% CI 1.06-11.13; P = 0.028). Patients with periprocedural MI were at a higher risk of spontaneous MI (HR 6.19; 95% CI 1.41-27.24; P = 0.006) and stent thrombosis (HR 10.77; 95% CI 2.29-50.70; P = 0.003) within 30 days. Age, hyperlipidemia, multi-vessel disease, post-procedural TIMI <3, pPCI on circumflex coronary artery, and periprocedural GP IIb/IIIa inhibitor were independent predictors of peri-pPCI MI.


CONCLUSIONS - In the era of intense antithrombotic therapy, the occurrence of peri-pPCI MI is despite highly sensitive diagnostic markers a rare complication, and is associated with an increased risk of early reinfarction and stent thrombosis.