CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Long-term outcomes after myocardial infarction in middle-aged and older patients with congenital heart disease-a nationwide study Clinical Efficacy and Safety of Alirocumab after Acute Coronary Syndrome According to Achieved Level of Low-Density Lipoprotein Cholesterol: A Propensity Score-Matched Analysis of the ODYSSEY OUTCOMES Trial Short term outcome following acute phase switch among P2Y12 inhibitors in patients presenting with acute coronary syndrome treated with PCI: A systematic review and meta-analysis including 22,500 patients from 14 studies Haptoglobin Phenotype Is Associated With High-Density Lipoprotein–Bound Hemoglobin Content and Coronary Endothelial Dysfunction in Patients With Mild Nonobstructive Coronary Artery Disease Pharmacotherapy in the Management of Anxiety and Pain During Acute Coronary Syndromes and the Risk of Developing Symptoms of Posttraumatic Stress Disorder Imaging Coronary Anatomy and Reducing Myocardial Infarction A randomised trial comparing two stent sizing strategies in coronary bifurcation treatment with bioresorbable vascular scaffolds - The Absorb Bifurcation Coronary (ABC) trial Cardiac monocytes and macrophages after myocardial infarction

Original Research2015 Mar 1;115(5):581-6.

JOURNAL:Am J Cardiol. Article Link

Location of the culprit coronary lesion and its association with delay in door-to-balloon time (from a multicenter registry of primary percutaneous coronary intervention)

Kuno T, Kohsaka S, Numasawa Y et al. Keywords: culprit coronary lesion; delay in door-to-balloon time;primary percutaneous coronary intervention

ABSTRACT

Current guidelines recommend shorter door-to-balloon times (DBTs) (<90 minutes) for patients with ST-elevation myocardial infarction (STEMI). Clinical factors, including patient or hospital characteristics, associated with prolonged DBT have been identified, but angiographic variables such as culprit lesion location have not been thoroughly investigated. We aimed to evaluate the effect of culprit artery location on DBT of patients with STEMI who underwent percutaneous coronary intervention (PCI). Data were analyzed from 1,725 patients with STEMI who underwent PCI from August 2008 to March 2014 at 16 Japanese hospitals. Patients were divided into 3 groups according to culprit artery location, right coronary artery (RCA), left anterior descending artery (LAD), and left circumflex artery (LC), and associations with DBT were assessed. The LC group had a trend toward a longer DBT among the 3 groups (97.1 [RCA] vs 98.1 [LAD] vs 105.1 [LC] minutes; p = 0.058). In-hospital mortality was also significantly higher in patients with a left coronary artery lesion (3.5% [RCA] vs 6.3% [LAD] vs 5.4% [LC]; p = 0.041). In-hospital mortality for patients with DBT >90 minutes was significantly higher compared with patients with DBT ≤90 minutes (6.5% vs 3.6%; p = 0.006). Multivariate logistic regression analysis revealed that the LC location was an independent predictor for DBT >90 minutes (odds ratio, 1.45; 95% confidence interval, 1.04 to 2.01; p = 0.028). In conclusion, LC location was an independent predictor of longer DBT. The difficulties in diagnosing LC-related STEMI need further evaluation.