CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Decreased inspired oxygen stimulates de novo formation of coronary collaterals in adult heart Bare metal versus drug eluting stents for ST-segment elevation myocardial infarction in the TOTAL trial New technologies for intensive prevention programs after myocardial infarction: rationale and design of the NET-IPP trial Characterization of lesions undergoing ischemia-driven revascularization after complete revascularization versus culprit lesion only in patients with STEMI and multivessel disease - A DANAMI-3-PRIMULTI substudy Stent Thrombosis Risk Over Time on the Basis of Clinical Presentation and Platelet Reactivity: Analysis From ADAPT-DES Implications of Alternative Definitions of Peri-Procedural Myocardial Infarction After Coronary Revascularization Risk Stratification Guided by the Index of Microcirculatory Resistance and Left Ventricular End-Diastolic Pressure in Acute Myocardial Infarction 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes: The Task Force for the diagnosis and management of chronic coronary syndromes of the European Society of Cardiology (ESC)

Original Research2015 Dec;90(12):1614-22.

JOURNAL:Mayo Clin Proc. Article Link

Aggressive Measures to Decrease "Door to Balloon" Time and Incidence of Unnecessary Cardiac Catheterization: Potential Risks and Role of Quality Improvement

Fanari Z, Abraham N, Kolm P et al. Keywords: Door to Balloon Time; Incidence of Unnecessary Cardiac Catheterization; Quality Improvement

ABSTRACT


OBJECTIVE - To assess the impact of an aggressive protocol to decrease the time from hospital arrival to onset of reperfusion therapy ("door to balloon [DTB] time") on the incidence of false-positive (FP) diagnosis of ST-segment elevation myocardial infarction (STEMI) and in-hospital mortality.


PATIENTS AND METHODS - The study population included 1031 consecutive patients with presumed STEMI and confirmed ST-segment elevation who underwent emergent catheterization between July 1, 2008, and December 1, 2012, On July 1, 2009, we instituted an aggressive protocol to reduce DTB time. A quality improvement (QI) initiative was introduced on January 1, 2011, to maintain short DTB while improving outcomes. Outcomes were compared before and after the initiation of the DTB time protocol and similarly before and after the QI initiative. Outcomes were DTB time, the incidence of FP-STEMI, and in-hospital mortality. A review of the emergency catheterization database for the 10-year period from January 1, 2001, through December 31, 2010, was performed for historical comparison.


RESULTS - Of the 1031 consecutive patients with presumed STEMI who were assessed, 170 were considered to have FP-STEMI. The median DTB time decreased significantly from 76 to 61 minutes with the aggressive DTB time protocol (P=.001), accompanied by an increase of FP-STEMI (7.7% vs 16.5%; P=.02). Although a nonsignificant reduction of in-hospital mortality occurred in patients with true-positive STEMI (P=.60), a significant increase in in-hospital mortality was seen in patients with FP-STEMI (P=.03). After the QI initiative, a shorter DTB time (59 minutes) was maintained while decreasing FP-STEMI in-hospital mortality.


CONCLUSION - Aggressive measures to reduce DTB time were associated with an increased incidence of FP-STEMI and FP-STEMI in-hospital mortality. Efforts to reduce DTB time should be monitored systematically to avoid unnecessary procedures that may delay other appropriate therapies in critically ill patients.


Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.