CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Transition of Macrophages to Fibroblast-Like Cells in Healing Myocardial Infarction Door to Balloon Time: Is There a Point That Is Too Short? TACIT (High Sensitivity Troponin T Rules Out Acute Cardiac Insufficiency Trial): An Observational Study to Identify Acute Heart Failure Patients at Low Risk for Rehospitalization or Mortality Anticoagulation combined with antiplatelet therapy in patients with left ventricular thrombus after first acute myocardial infarction Effect of improved door-to-balloon time on clinical outcomes in patients with ST segment elevation myocardial infarction Symptom-Onset-To-Balloon Time, ST-Segment Resolution and In-Hospital Mortality in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention in China: From China Acute Myocardial Infarction Registry Non-eligibility for reperfusion therapy in patients presenting with ST-segment elevation myocardial infarction: Contemporary insights from the National Cardiovascular Data Registry (NCDR) Coronary Catheterization and Percutaneous Coronary Intervention in China: 10-Year Results From the China PEACE-Retrospective CathPCI Study

Original Research2021 Jan 14. doi: 10.1055/s-0040-1722226.

JOURNAL:Thromb Haemost. Article Link

Circulating MicroRNAs and Monocyte-Platelet Aggregate Formation in Acute Coronary Syndrome

S Stojkovic, PP Wadowski, P Haider et al. Keywords: platelet aggregate; ACS

ABSTRACT

BACKGROUND - Monocyte-platelet aggregates (MPAs) are a sensitive marker of in vivo platelet activation in acute coronary syndrome (ACS) and associated with clinical outcomes. MicroRNAs (miRs) play an important role in the regulation of platelet activation, and may influence MPA formation. Both, miRs and MPA, could be influenced by the type of P2Y12 inhibitor.

 

AIM - To study the association of platelet-related miRs with MPA formation in ACS patients on dual antiplatelet therapy (DAPT), and to compare miRs and MPA levels between prasugrel- and ticagrelor-treated patients.

 

METHODS AND RESULTS - We analyzed 10 circulating platelet-related miRs in 160 consecutive ACS patients on DAPT with low-dose aspirin and either prasugrel (n = 80) or ticagrelor (n = 80). MPA formation was measured by flow cytometry without addition of platelet agonists and after simulation with the toll-like receptor (TLR)-1/2 agonist Pam3CSK4, adenosine diphosphate (ADP), or arachidonic acid (AA). In multivariate regression analyses, we identified miR-21 (β = 9.50, 95% confidence interval [CI]: 1.60-17.40, p = 0.019) and miR-126 (β = 7.50, 95% CI: 0.55-14.44, p = 0.035) as independent predictors of increased MPA formation in vivo and after TLR-1/2 stimulation. In contrast, none of the investigated miRs was independently associated with MPA formation after stimulation with ADP or AA. Platelet-related miR expression and MPA formation did not differ significantly between prasugrel- and ticagrelor-treated patients.

 

CONCLUSION - Platelet-related miR-21 and miR-126 are associated with MPA formation in ACS patients on DAPT. miRs and MPA levels were similar in prasugrel- and ticagrelor-treated patients.


Thieme. All rights reserved.