CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Late Survival Benefit of Percutaneous Coronary Intervention Compared With Medical Therapy in Patients With Coronary Chronic Total Occlusion: A 10-Year Follow-Up Study Optimal medical therapy vs. coronary revascularization for patients presenting with chronic total occlusion: A meta-analysis of randomized controlled trials and propensity score adjusted studies Post-Discharge Bleeding and Mortality Following Acute Coronary Syndromes With or Without PCI Effects of clopidogrel vs. prasugrel vs. ticagrelor on endothelial function, inflammatory parameters, and platelet function in patients with acute coronary syndrome undergoing coronary artery stenting: a randomized, blinded, parallel study Acute Coronary Syndrome Following Transcatheter Aortic Valve Replacement Myocardial infarction with non-obstructive coronary arteries as compared with myocardial infarction and obstructive coronary disease: outcomes in a Medicare population Switching P2Y12-receptor inhibitors in patients with coronary artery disease Morphine and Cardiovascular Outcomes Among Patients With Non-ST-Segment Elevation Acute Coronary Syndromes Undergoing Coronary Angiography

Clinical Trial2021 Feb;14(2):e009529.

JOURNAL:Circ Cardiovasc Interv. Article Link

Risk Stratification Guided by the Index of Microcirculatory Resistance and Left Ventricular End-Diastolic Pressure in Acute Myocardial Infarction

AM Maznyczka, PJ McCartney, KG Oldroyd et al. Keywords: index of microcirculatory resistance; left ventricular end diastolic pressure; MI; PCI; risk stratification

ABSTRACT

 

BACKGROUND - The index of microcirculatory resistance (IMR) of the infarct-related artery and left ventricular end-diastolic pressure (LVEDP) are acute, prognostic biomarkers in patients undergoing primary percutaneous coronary intervention. The clinical significance of IMR and LVEDP in combination is unknown.

 

METHODS - IMR and LVEDP were prospectively measured in a prespecified substudy of the T-TIME clinical trial (Trial of Low Dose Adjunctive Alteplase During Primary PCI). IMR was measured using a pressure- and temperature-sensing guidewire following percutaneous coronary intervention. Prognostically established thresholds for IMR (>32) and LVEDP (>18 mm Hg) were predefined. Contrast-enhanced cardiovascular magnetic resonance imaging (1.5 Tesla) was acquired 2 to 7 days and 3 months postmyocardial infarction. The primary end point was major adverse cardiac events, defined as cardiac death/nonfatal myocardial infarction/heart failure hospitalization at 1 year.

 

RESULTS - IMR and LVEDP were both measured in 131 patients (mean age 59±10.7 years, 103 [78.6%] male, 48 [36.6%] with anterior myocardial infarction). The median IMR was 29 (interquartile range, 17-55), the median LVEDP was 17 mm Hg (interquartile range, 12-21), and the correlation between them was not statistically significant (r=0.15; P=0.087). Fifty-three patients (40%) had low IMR (32) and low LVEDP (18), 18 (14%) had low IMR and high LVEDP, 31 (24%) had high IMR and low LVEDP, while 29 (22%) had high IMR and high LVEDP. Infarct size (% LV mass), LV ejection fraction, final myocardial perfusion grade 1, TIMI (Thrombolysis In Myocardial Infarction) flow grade 2, and coronary flow reserve were associated with LVEDP/IMR group, as was hospitalization for heart failure (n=18 events; P=0.045) and major adverse cardiac events (n=21 events; P=0.051). LVEDP>18 and IMR>32 combined was associated with major adverse cardiac events, independent of age, estimated glomerular filtration rate, and infarct-related artery (odds ratio, 5.80 [95% CI, 1.60-21.22] P=0.008). The net reclassification improvement for detecting major adverse cardiac events was 50.6% (95% CI, 2.7-98.2; P=0.033) when LVEDP>18 was added to IMR>32.

 

CONCLUSIONS - IMR and LVEDP in combination have incremental value for risk stratification following primary percutaneous coronary intervention. Registration: URL: https://www.clinicaltrials.gov. Unique identifier: NCT02257294.