CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Comparison of Inhospital Mortality and Frequency of Coronary Angiography on Weekend Versus Weekday Admissions in Patients With Non-ST-Segment Elevation Acute Myocardial Infarction Aggressive Measures to Decrease "Door to Balloon" Time and Incidence of Unnecessary Cardiac Catheterization: Potential Risks and Role of Quality Improvement National assessment of early β-blocker therapy in patients with acute myocardial infarction in China, 2001-2011: The China Patient-centered Evaluative Assessment of Cardiac Events (PEACE)-Retrospective AMI Study Comparison of hospital variation in acute myocardial infarction care and outcome between Sweden and United Kingdom: population based cohort study using nationwide clinical registries High-Sensitivity Troponins and Outcomes After Myocardial Infarction Symptom onset-to-balloon time and mortality in the first seven years after STEMI treated with primary percutaneous coronary intervention Balloon-to-door time: emerging evidence for shortening hospital stay after primary PCI for STEMI Comparison of Outcomes of Patients With ST-Segment Elevation Myocardial Infarction Treated by Primary Percutaneous Coronary Intervention Analyzed by Age Groups (<75, 75 to 85, and >85 Years); (Results from the Bremen STEMI Registry)

Original Research2016 Jul 1;102(13):1023-8.

JOURNAL:Heart. Article Link

Remote ischaemic conditioning and healthcare system delay in patients with ST-segment elevation myocardial infarction

Pryds K, Terkelsen CJ, CONDI Investigators. Keywords: STEMI; remote ischaemic conditioning; healthcare system delay

ABSTRACT


OBJECTIVE - We investigated influence of remote ischaemic conditioning (RIC) on the detrimental effect of healthcare system delay on myocardial salvage in patients with ST-segment elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (pPCI).


METHODS - A post-hoc analysis of a randomised controlled trial in patients with STEMI randomised to treatment with pPCI or RIC+pPCI. RIC was performed as four cycles of intermittent 5 min upper arm ischaemia and reperfusion. Healthcare system delay was defined as time from emergency medical service call to pPCI-wire. Myocardial salvage index (MSI) was assessed by single photon emission computerised tomography.


RESULTS - Data for healthcare system delay and MSI were available for 129 patients. MSI was negatively associated with healthcare system delay in patients treated with pPCI alone (-0.003 decrease in MSI/min of healthcare system delay; 95% CI -0.005 to -0.001, r(2)=0.11, p=0.008) but not in patients treated with RIC+pPCI (-0.0002 decrease in MSI/min of healthcare system delay; 95% CI -0.001 to 0.001, r(2)=0.002, p=0.74). In patients with healthcare system delay ≤120 min, RIC+pPCI did not affect median MSI compared with pPCI alone (0.75 (IQR: 0.49-0.99) and 0.70 (0.45-0.94), p=1.00). However, in patients with healthcare system delay >120 min, RIC+pPCI increased median MSI compared with pPCI alone (0.74 (0.52-0.93) vs 0.42 (0.22-0.68), p=0.02). Adjusting for potential confounders did not affect the results.


CONCLUSIONS - RIC as adjunctive to pPCI attenuated the detrimental effect of healthcare system delay on myocardial salvage in patients with STEMI, suggesting that the cardioprotective effect of RIC increases with the duration of ischaemia.



TRIAL REGISTRATION NUMBER - NCT00435266; post-results.