CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Relation of Stature to Outcomes in Korean Patients Undergoing Primary Percutaneous Coronary Intervention for Acute ST-Elevation Myocardial Infarction (from the INTERSTELLAR Registry) National assessment of early β-blocker therapy in patients with acute myocardial infarction in China, 2001-2011: The China Patient-centered Evaluative Assessment of Cardiac Events (PEACE)-Retrospective AMI Study Patterns of use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers among patients with acute myocardial infarction in China from 2001 to 2011: China PEACE-Retrospective AMI Study Recurrent Cardiovascular Events in Survivors of Myocardial Infarction with St-Segment Elevation (From the AMI-QUEBEC Study) Off-hour presentation and outcomes in patients with acute myocardial infarction: systematic review and meta-analysis Trends of Incidence, Clinical Presentation, and In-Hospital Mortality Among Women With Acute Myocardial Infarction With or Without Spontaneous Coronary Artery Dissection: A Population-Based Analysis Management of ST-segment elevation myocardial infarction in predominantly rural central China: A retrospective observational study Catheter Ablation of Refractory Ventricular Fibrillation Storm After Myocardial Infarction: A Multicenter Study

Review Article2021 Jun 4;PP.

JOURNAL:IEEE Trans Med Imaging. Article Link

Dynamic Myocardial Ultrasound Localization Angiography

P Cormier, J Poree, C Bourquin et al. Keywords: dynamic myocardial ultrasound localization angiography

ABSTRACT

Dynamic Myocardial Ultrasound Localization Angiography (MULA) is an ultrasound-based imaging modality destined to enhance the diagnosis and treatment monitoring of coronary pathologies. Current diagnosis methods of coronary artery disease focus on the observation of vessel narrowing in the coronary vasculature to assess the organ’s condition. However, we would strongly benefit from mapping and measuring flow from intramyocardial arterioles and capillaries as they are the direct vehicle of the myocardium blood income. With the advent of ultrafast ultrasound scanners, imaging modalities based on the localization and tracking of injected microbubbles allow for the subwavelength resolution imaging of an organ’s vasculature. Yet, the application of these vascular imaging modalities relies on an accumulation of cine loops of a region of interest undergoing no or minimal tissue motion. This work introduces the MULA framework that combines 1) the mapping of the dynamics of the microvascular flow using an ultrasound sequence triggered by the electrocardiogram with a 2) novel Lagrangian beamformer based on non-rigid motion registration algorithm to form images directly in the myocardium’s material coordinates and thus correcting for the large myocardial motion and deformation. Specifically, we show that this framework enables the non-invasive imaging of the angioarchitecture and dynamics of intramyocardial flow in vessels as small as a few tens of microns in the rat’s beating heart in vivo.