CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

The Potential Use of the Index of Microcirculatory Resistance to Guide Stratification of Patients for Adjunctive Therapy in Acute Myocardial Infarction Coronary Angiography in Patients With Out-of-Hospital Cardiac Arrest Without ST-Segment Elevation: A Systematic Review and Meta-Analysis Subcutaneous Selatogrel Inhibits Platelet Aggregation in Patients With Acute Myocardial Infarction Healed Culprit Plaques in Patients With Acute Coronary Syndromes Evaluation and Management of Nonculprit Lesions in STEMI TACIT (High Sensitivity Troponin T Rules Out Acute Cardiac Insufficiency Trial): An Observational Study to Identify Acute Heart Failure Patients at Low Risk for Rehospitalization or Mortality Short Sleep Duration, Obstructive Sleep Apnea, Shiftwork, and the Risk of Adverse Cardiovascular Events in Patients After an Acute Coronary Syndrome Chronic Kidney Disease and Coronary Artery Disease

Review Article2021 Jun 4;PP.

JOURNAL:IEEE Trans Med Imaging. Article Link

Dynamic Myocardial Ultrasound Localization Angiography

P Cormier, J Poree, C Bourquin et al. Keywords: dynamic myocardial ultrasound localization angiography

ABSTRACT

Dynamic Myocardial Ultrasound Localization Angiography (MULA) is an ultrasound-based imaging modality destined to enhance the diagnosis and treatment monitoring of coronary pathologies. Current diagnosis methods of coronary artery disease focus on the observation of vessel narrowing in the coronary vasculature to assess the organ’s condition. However, we would strongly benefit from mapping and measuring flow from intramyocardial arterioles and capillaries as they are the direct vehicle of the myocardium blood income. With the advent of ultrafast ultrasound scanners, imaging modalities based on the localization and tracking of injected microbubbles allow for the subwavelength resolution imaging of an organ’s vasculature. Yet, the application of these vascular imaging modalities relies on an accumulation of cine loops of a region of interest undergoing no or minimal tissue motion. This work introduces the MULA framework that combines 1) the mapping of the dynamics of the microvascular flow using an ultrasound sequence triggered by the electrocardiogram with a 2) novel Lagrangian beamformer based on non-rigid motion registration algorithm to form images directly in the myocardium’s material coordinates and thus correcting for the large myocardial motion and deformation. Specifically, we show that this framework enables the non-invasive imaging of the angioarchitecture and dynamics of intramyocardial flow in vessels as small as a few tens of microns in the rat’s beating heart in vivo.