CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Relation of Stature to Outcomes in Korean Patients Undergoing Primary Percutaneous Coronary Intervention for Acute ST-Elevation Myocardial Infarction (from the INTERSTELLAR Registry) National assessment of early β-blocker therapy in patients with acute myocardial infarction in China, 2001-2011: The China Patient-centered Evaluative Assessment of Cardiac Events (PEACE)-Retrospective AMI Study Patterns of use of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers among patients with acute myocardial infarction in China from 2001 to 2011: China PEACE-Retrospective AMI Study Recurrent Cardiovascular Events in Survivors of Myocardial Infarction with St-Segment Elevation (From the AMI-QUEBEC Study) Off-hour presentation and outcomes in patients with acute myocardial infarction: systematic review and meta-analysis Trends of Incidence, Clinical Presentation, and In-Hospital Mortality Among Women With Acute Myocardial Infarction With or Without Spontaneous Coronary Artery Dissection: A Population-Based Analysis Management of ST-segment elevation myocardial infarction in predominantly rural central China: A retrospective observational study Catheter Ablation of Refractory Ventricular Fibrillation Storm After Myocardial Infarction: A Multicenter Study

Clinical Trial2021 Aug 1;152:34-42.

JOURNAL:Am J Cardiol. Article Link

Effect of Lipoprotein (a) Levels on Long-term Cardiovascular Outcomes in Patients with Myocardial Infarction with Nonobstructive Coronary Arteries

SD Gao, WJ Ma, MY Yu Keywords: Lp(a); MINOCA; STEMI; prognostic value; MACE

ABSTRACT

The association between elevated lipoprotein(a) [Lp(a)] and poor outcomes in coronary artery disease (CAD) has been addressed for decades. However, little is known about the prognostic value of Lp(a) in patients with myocardial infarction with nonobstructive coronary arteries (MINOCA). A total of 1179 patients with MINOCA were enrolled and divided into low, medium, and high Lp(a) groups based on the cut-off value of 10 and 30mg/dL. The primary endpoint was major adverse cardiovascular events (MACE), a composite of all-cause death, nonfatal MI, nonfatal stroke, revascularization, and hospitalization for unstable angina or heart failure. Kaplan-Meier and Cox regression analyses were performed. Accuracy was defined as area under the curve (AUC) using a receiver-operating characteristic analysis. Patients with higher Lp(a) levels had a significantly higher incidence of MACE (9.5%, 14.6%, 18.5%; p = 0.002) during the median follow-up of 41.7 months. The risk of MACE also increased with the rising Lp(a) levels even after multivariate adjustment [low Lp(a) group as reference, medium group: hazard ratio (HR) 1.55, 95% confidence interval (CI): 1.02-2.40, p = 0.047; high group: HR 2.07, 95% CI: 1.32-3.25, p = 0.001]. Further, clinically elevated Lp(a) defined as Lp(a) ≥30 mg/dL was closely associated with an increased risk of MACE in overall and in subgroups (all p <0.05). When adding Lp(a) (AUC 0.61) into the Thrombolysis in Myocardial Infarction (TIMI) score (AUC 0.68), the combined model (AUC 0.73) yielded a significant improvement in discrimination for MACE (ΔAUC 0.05, p = 0.032). In conclusion, elevated Lp(a) was strongly associated with a poor prognosis in patients with MINOCA. Adding Lp(a) to traditional risk score further improved risk prediction. Our data, for the first time, confirmed the Lp(a) as a residual risk factor for MINOCA.