CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Cardiac Troponin Composition Characterization after Non ST-Elevation Myocardial Infarction: Relation with Culprit Artery, Ischemic Time Window, and Severity of Injury Phosphoproteomic Analysis of Neonatal Regenerative Myocardium Revealed Important Roles of CHK1 via Activating mTORC1/P70S6K Pathway Comparison of hospital variation in acute myocardial infarction care and outcome between Sweden and United Kingdom: population based cohort study using nationwide clinical registries Frequency of nonsystem delays in ST-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention and implications for door-to-balloon time reporting (from the American Heart Association Mission: Lifeline program) Mild Hypothermia in Cardiogenic Shock Complicating Myocardial Infarction - The Randomized SHOCK-COOL Trial Application of High-Sensitivity Troponin in Suspected Myocardial Infarction Ticagrelor alone vs. ticagrelor plus aspirin following percutaneous coronary intervention in patients with non-ST-segment elevation acute coronary syndromes: TWILIGHT-ACS Quality of Care in Chinese Hospitals: Processes and Outcomes After ST-segment Elevation Myocardial Infarction

Clinical Trial2018 Feb 6;71(5):499-509.

JOURNAL:J Am Coll Cardiol. Article Link

Effect of Plaque Burden and Morphology on Myocardial Blood Flow and Fractional Flow Reserve

Driessen RS, Stuijfzand WJ, Knaapen P et al. Keywords: coronary artery disease; coronary computed tomography angiography; fractional flow reserve; myocardial perfusion; plaque; positron emission tomography

ABSTRACT


BACKGROUND - Atherosclerotic plaque characteristics may affect downstream myocardial perfusion, as well as coronary lesion severity.


OBJECTIVES - This study sought to evaluate the association between quantitative plaque burden and plaque morphology obtained using coronary computed tomography angiography (CTA) and quantitative myocardial perfusion obtained using [15O]H2O positron emission tomography (PET), as well as fractional flow reserve (FFR) derived invasively.


METHODS - Two hundred eight patients (63% men; age 58 ± 8.7 years) with suspected coronary artery disease were prospectively included. All patients underwent 256-slice coronary CTA, [15O]H2O PET, and invasive FFR measurements. Coronary CTA-derived plaque burden and morphology were assessed using commercially available software and compared with PET perfusion and FFR.

RESULTS - Atherosclerotic plaques were present in 179 patients (86%) and 415 of 610 (68%) evaluable coronary arteries. On a per-vessel basis, traditional coronary plaque burden indexes, such as plaque length and volume, minimal lumen area, and stenosis percentage, were significantly associated with impaired hyperemic myocardial blood flow (MBF) and FFR. In addition, morphological features, such as partially calcified plaques, positive remodeling (PR), and low attenuation plaque, displayed a negative impact on hyperemic MBF and FFR. Multivariable analysis revealed that the morphological feature of PR was independently related to impaired hyperemic MBF as well as an unfavorable FFR (p = 0.004 and p = 0.007, respectively), next to stenosis percentage (p = 0.001 and p < 0.001, respectively) and noncalcified plaque volume (p < 0.001 and p = 0.010, respectively).

CONCLUSIONS - PR and noncalcified plaque volume are associated with detrimental downstream hyperemic myocardial perfusion and FFR, independent of lesion severity.

Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.