CBS 2019
CBSMD教育中心
中 文

Acute Coronary Syndrom

Abstract

Recommended Article

Predicting Major Adverse Events in Patients With Acute Myocardial Infarction Homeostatic Chemokines and Prognosis in Patients With Acute Coronary Syndromes SCAI Clinical Expert Consensus Statement on Cardiogenic Shock Impact of Percutaneous Coronary Intervention for Chronic Total Occlusion in Non-Infarct-Related Arteries in Patients With Acute Myocardial Infarction (from the COREA-AMI Registry) Coronary CT Angiography in Patients With Non-ST-Segment Elevation Acute Coronary Syndrome High-sensitivity troponin in the evaluation of patients with suspected acute coronary syndrome: a stepped-wedge, cluster-randomised controlled trial Comparison in prevalence, predictors, and clinical outcome of VSR versus FWR after acute myocardial infarction: The prospective, multicenter registry MOODY trial-heart rupture analysis Outcome of Applying the ESC 0/1-hour Algorithm in Patients With Suspected Myocardial Infarction

Clinical TrialVolume 71, Issue 23, June 2018

JOURNAL:J Am Coll Cardiol. Article Link

High-Sensitivity Troponins and Outcomes After Myocardial Infarction

Odqvist M, Andersson PO, Tygesen H et al. Keywords: biomarkers; coronary angiography; coronary artery disease; coronary revascularization; incidence; prognosis

ABSTRACT

BACKGROUND - It remains unknown how the introduction of high-sensitivity cardiac troponin T (hs-cTnT) has affected the incidence, prognosis, and use of coronary angiographies and revascularizations in patients with myocardial infarction (MI).

OBJECTIVES - The aim of this study was to investigate how the incidence of MI and prognosis after a first MI was affected by the introduction of hs-cTnT.

METHODS - In a cohort study, the authors included all patients with a first MI from the Swedish National Patient Registry from 2009 to 2013. Cox regression was used to calculate hazard ratios (HRs) with 95% confidence intervals (CIs) for risk of all-cause mortality, reinfarction, coronary angiographies, and revascularizations in patients with MI diagnosed using hs-cTnT compared with those diagnosed using conventional troponins (cTn).

RESULTS - During the study period, 47,133 MIs were diagnosed using cTn and 40,746 using hs-cTnT. The rate of MI increased by 5% (95% CI: 0% to 10%) after the introduction of hs-cTnT. During 3.9 ± 2.8 years of follow-up, there were 33,492 deaths, with no difference in the risk of all-cause mortality (adjusted HR: 1.00; 95% CI: 0.97 to 1.02). There were, in total, 15,766 reinfarctions during 3.1 ± 2.3 years of follow-up, with the risk of reinfarction reduced by 11% in patients diagnosed using hs-cTnT (adjusted HR: 0.89; 95% CI: 0.86 to 0.91). The use of coronary angiographies (adjusted HR: 1.16; 95% CI: 1.14 to 1.18) and revascularizations (adjusted HR: 1.13; 95% CI: 1.11 to 1.15) increased in the hs-cTnT group.

CONCLUSIONS - In a nationwide cohort study including 87,879 patients with a first MI, the introduction of hs-cTnT was associated with an increased incidence of MI, although with no impact on survival. We also found a reduced risk of reinfarction alongside increased use of coronary angiographies and revascularizations.