CBS 2019
CBSMD教育中心
中 文

Fractional Flow Reserve

Abstract

Recommended Article

Coronary Physiology in the Cardiac Catheterization Laboratory Impact of Percutaneous Revascularization on Exercise Hemodynamics in Patients With Stable Coronary Disease Prognostic Implication of Thermodilution Coronary Flow Reserve in Patients Undergoing Fractional Flow Reserve Measurement Correlation between frequency-domain optical coherence tomography and fractional flow reserve in angiographically-intermediate coronary lesions Functional and morphological assessment of side branch after left main coronary artery bifurcation stenting with cross-over technique Blinded Physiological Assessment of Residual Ischemia After Successful Angiographic Percutaneous Coronary Intervention: The DEFINE PCI Study Robustness of Fractional Flow Reserve for Lesion Assessment in Non-Infarct-Related Arteries of Patients With Myocardial Infarction Coronary Microcirculation Downstream Non-Infarct-Related Arteries in the Subacute Phase of Myocardial Infarction: Implications for Physiology-Guided Revascularization

Clinical Trial2017 Dec 1;248:92-96 [Epub 2017 Aug 18]

JOURNAL:Int J Cardiol. Article Link

Anatomical plaque and vessel characteristics are associated with hemodynamic indices including fractional flow reserve and coronary flow reserve: A prospective exploratory intravascular ultrasound analysis

Brown AJ, Giblett JP, Hoole SP et al. Keywords: Coronary artery disease; Coronary flow reserve; Coronary physiology; Fractional flow reserve; Intravascular ultrasound

ABSTRACT


OBJECTIVES - To assess the relationship between anatomical form and physiological function in atherosclerotic coronary arteries.


BACKGROUND - Although adverse cardiovascular events are predicted by plaque morphology or invasively-derived hemodynamic indices, the link between these important prognostic measures remains unexplored.


METHODS - Patients with stable angina underwent fractional flow reserve (FFR), coronary flow reserve (CFR), pressure-derived collateral flow index (CFIp), trans-myocardial biomarker sampling and radiofrequency intravascular ultrasound (IVUS) imaging prior to intervention. Physiological ischemia was defined as either FFR≤0.8 or CFR<2.0.


RESULTS - Mean FFR was 0.70±0.15 and CFR was 2.1±1.3, with 68/92 lesions having FFR≤0.8 and 61/92 having CFR<2.0. On IVUS, FFR≤0.8 lesions had reduced minimal luminal area (MLA, p=0.03), increased plaqueburden (PB, p=0.04) and volume (p=0.01). There was no relationship between FFR and IVUS-defined plaque composition. FFR≤0.8 was observed in 75.3%, 72.4% and 70.4% of lesions with MLA≤4mm2, PB≥70% and thin-cap fibroatheroma, respectively. Multivariate regression demonstrated FFR≤0.8 was independently predicted by MLA (odds ratio (OR) 0.53, 95% CI 0.29-0.97, p=0.04) and PB (OR 1.10, 95% CI 1.01-1.21, p=0.03). There were no identifiable relationships between plaque structure and CFR or CFIp. CFR<2.0 was associated with whole vessel necrotic core increases (p=0.047), fibrofatty tissue reduction (p=0.004) and elevated baseline transmyocardial high-sensitivity C-reactive protein (hsCRP) gradients (p=0.02).


CONCLUSIONS - Measures of plaque structure including PB and MLA are independently associated with FFR, but not with CFR or CFIp. Instead, vessels with low CFR have increased lipid accumulation and a higher transmyocardial hsCRP gradient. These results may explain similarities in clinical outcomes between physiologically and anatomically orientated trials.