CBS 2019
CBSMD教育中心
中 文

Fractional Flow Reserve

Abstract

Recommended Article

Use of the Instantaneous Wave-free Ratio or Fractional Flow Reserve in PCI Accuracy of Fractional Flow Reserve Derived From Coronary Angiography Anatomical plaque and vessel characteristics are associated with hemodynamic indices including fractional flow reserve and coronary flow reserve: A prospective exploratory intravascular ultrasound analysis Prognostic Implication of Functional Incomplete Revascularization and Residual Functional SYNTAX Score in Patients With Coronary Artery Disease Diagnostic performance of transluminal attenuation gradient and fractional flow reserve by coronary computed tomographic angiography (FFR(CT)) compared to invasive FFR: a sub-group analysis from the DISCOVER-FLOW and DeFACTO studies Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW Machine Learning Approaches in Cardiovascular Imaging The Utility of Contrast Medium Fractional Flow Reserve in Functional Assessment Of Coronary Disease in Daily Practice

Clinical Case Study2018 Jan 1;121(1):9-13.

JOURNAL:Am J Cardiol. Article Link

Experience With an On-Site Coronary Computed Tomography-Derived Fractional Flow Reserve Algorithm for the Assessment of Intermediate Coronary Stenoses

Donnelly PM, Kolossváry M, Maurovich-Horvat P et al. Keywords: Coronary Computed Tomography-Derived Fractional Flow Reserve; Intermediate Coronary Stenoses

ABSTRACT


Fractional flow reserve (FFR) derived from coronary computed tomography angiography (CTA) is a new technique for the diagnosis of ischemic coronary artery stenoses. The aim of this prospective study was to evaluate the diagnostic performance of a novel on-site computed tomography-based fractional flow reserve algorithm (CT-FFR) compared with invasive FFR as the gold standard, and to determine whether its diagnostic performance is affected by interobserver variations in lumen segmentation. We enrolled 44 consecutive patients (64.6 ± 8.9 years, 34% female) with 60 coronary atherosclerotic lesions who underwent coronary CTA and invasive coronary angiography in 2 centers. An FFR value ≤0.8 was considered significant. Coronary CTA scans were evaluated by 2 expert readers, who manually adjusted the semiautomated coronary lumen segmentations for effective diameter stenosis (EDS) assessment and on-site CT-FFR simulation. The mean CT-FFR value was 0.77 ± 0.15, whereas the mean EDS was 43.6 ± 16.9%. The sensitivity, specificity, positive predictive value, and negative predictive value of CT-FFR versus EDS with a cutoff of 50% were the following: 91%, 72%, 63%, and 93% versus 52%, 87%, 69%, and 77%, respectively. The on-site CT-FFR demonstrated significantly better diagnostic performance compared with EDS (area under the curve 0.89 vs 0.74, respectively, p <0.001). The CT-FFR areas under the curve of the 2 readers did not show any significant difference (0.89 vs 0.88, p = 0.74). In conclusion, on-site CT-FFR simulation is feasible and has better diagnostic performance than anatomic stenosis assessment. Furthermore, the diagnostic performance of the on-site CT-FFR simulation algorithm does not depend on the readers' semiautomated lumen segmentation adjustments.