CBS 2019
CBSMD教育中心
中 文

Fractional Flow Reserve

Abstract

Recommended Article

Physiologic Characteristics and Clinical Outcomes of Patients With Discordance Between FFR and iFR Sex Differences in Instantaneous Wave-Free Ratio or Fractional Flow Reserve–Guided Revascularization Strategy Real-world clinical utility and impact on clinical decision-making of coronary computed tomography angiography-derived fractional flow reserve: lessons from the ADVANCE Registry Diagnostic accuracy of fractional flow reserve from anatomic CT angiography Comparison of Coronary Computed Tomography Angiography, Fractional Flow Reserve, and Perfusion Imaging for Ischemia Diagnosis Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps) Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty Fractional Flow Reserve-Guided Complete Revascularization Improves the Prognosis in Patients With ST-Segment-Elevation Myocardial Infarction and Severe Nonculprit Disease: A DANAMI 3-PRIMULTI Substudy (Primary PCI in Patients With ST-Elevation Myocardial Infarction and Multivessel Disease: Treatment of Culprit Lesion Only or Complete Revascularization)

Clinical Trial2018 Mar 14;39(11):945-951.

JOURNAL:Eur Heart J. Article Link

Clinical implications of three-vessel fractional flow reserve measurement in patients with coronary artery disease

Lee JM, Koo BK, Shin ES et al. Keywords: three-vessel fractional flow reserve measurement; coronary artery disease

ABSTRACT


AIMSThere are limited data on the clinical implications of total physiologic atherosclerotic burden assessed by invasive physiologic studies in patients with coronary artery disease. We investigated the prognostic implications of total physiologic atherosclerotic burden assessed by total sum of fractional flow reserve (FFR) in three vessels (3V-FFR).


METHODS AND RESULTS - A total of 1136 patients underwent FFR measurement in three vessels (3V FFR-FRIENDS study, NCT01621438). The patients were classified into high and low 3V-FFR groups according to the median value of 3V-FFR (2.72). The primary endpoint was major adverse cardiac events (MACE, a composite of cardiac death, myocardial infarction and ischaemia-driven revascularization) at 2 years. Mean angiographic percent diameter stenosis and FFR were 43.7 ± 19.3% and 0.90 ± 0.08, respectively. There was a negative correlation between 3V-FFR and estimated 2-year MACE rate (P < 0.001). The patients in low 3V-FFR group showed a higher risk of 2-year MACE than those in the high 3V-FFR group [(7.1% vs. 3.8%, hazard ratio (HR) 2.205, 95% confidence interval (CI) 1.201-4.048, P = 0.011]. The higher 2-year MACE rate was mainly driven by the higher rate of ischaemia-driven revascularization in the low 3V-FFR group (6.2% vs. 2.7%, HR 2.568, 95% CI 1.283-5.140, P = 0.008). In a multivariable adjusted model, low 3V-FFR was an independent predictor of MACE (HR 2.031, 95% CI 1.078-3.830, P = 0.029).

CONCLUSION - Patients with high total physiologic atherosclerotic burden assessed by 3V-FFR showed higher risk of 2-year clinical events than those with low total physiologic atherosclerotic burden. The difference was mainly driven by ischaemia-driven revascularization for both functionally significant and insignificant lesions at baseline. Three-vessel FFR might be used as a prognostic indicator in patients with coronary artery disease.

CLINICAL TRIAL REGISTRATION - 3V FFR-FRIENDS study (https://clinicaltrials.gov/ct2/show/NCT01621438, NCT01621438).