CBS 2019
CBSMD教育中心
中 文

Fractional Flow Reserve

Abstract

Recommended Article

Coronary Physiology in the Cardiac Catheterization Laboratory Impact of Percutaneous Revascularization on Exercise Hemodynamics in Patients With Stable Coronary Disease Prognostic Implication of Thermodilution Coronary Flow Reserve in Patients Undergoing Fractional Flow Reserve Measurement Correlation between frequency-domain optical coherence tomography and fractional flow reserve in angiographically-intermediate coronary lesions Functional and morphological assessment of side branch after left main coronary artery bifurcation stenting with cross-over technique Robustness of Fractional Flow Reserve for Lesion Assessment in Non-Infarct-Related Arteries of Patients With Myocardial Infarction Blinded Physiological Assessment of Residual Ischemia After Successful Angiographic Percutaneous Coronary Intervention: The DEFINE PCI Study Coronary Microcirculation Downstream Non-Infarct-Related Arteries in the Subacute Phase of Myocardial Infarction: Implications for Physiology-Guided Revascularization

Review Article2017 Jul 1;2(7):803-810.

JOURNAL:JAMA Cardiol. Article Link

Diagnostic Accuracy of Computed Tomography-Derived Fractional Flow Reserve : A Systematic Review

Cook CM, Petraco R, Shun-Shin MJ et al. Keywords: Computed Tomography-Derived Fractional Flow Reserve; accuracy

ABSTRACT


IMPORTANCE - Computed tomography-derived fractional flow reserve (FFR-CT) is a novel, noninvasive test for myocardial ischemia. Clinicians using FFR-CT must be able to interpret individual FFR-CT results to determine subsequent patient care.


OBJECTIVE - To provide clinicians a means of interpreting individual FFR-CT results with respect to the range of invasive FFRs that this interpretation might likely represent.

EVIDENCE REVIEW - We performed a systematic review in accordance with guidelines from the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. A systematic search of MEDLINE (January 1, 2011, to 2016, week 2) and EMBASE (January 1, 2011, to 2016, week 2) was performed for studies assessing the diagnostic accuracy of FFR-CT. Title words used were computed tomography or computed tomographic and fractional flow reserve or FFR. Results were limited to publications in peer-reviewed journals. Duplicate studies and abstracts from scientific meetings were removed. All of the retrieved studies, including references, were reviewed.

FINDINGS - There were 908 vessels from 536 patients in 5 studies included in the analysis. A total of 365 (68.1%) were male, and the mean (SD) age was 63.2 (9.5) years. The overall per-vessel diagnostic accuracy of FFR-CT was 81.9% (95% CI, 79.4%-84.4%). For vessels with FFR-CT values below 0.60, 0.60 to 0.70, 0.70 to 0.80, 0.80 to 0.90, and above 0.90, diagnostic accuracy of FFR-CT was 86.4% (95% CI, 78.0%-94.0%), 74.7% (95% CI, 71.9%-77.5%), 46.1% (95% CI, 42.9%-49.3%), 87.3% (95% CI, 85.1%-89.5%), and 97.9% (95% CI, 97.9%-98.8%), respectively. The 82% (overall) diagnostic accuracy threshold was met for FFR-CT values lower than 0.63 or above 0.83. More stringent 95% and 98% diagnostic accuracy thresholds were met for FFR-CT values lower than 0.53 or above 0.93 and lower than 0.47 or above 0.99, respectively.

CONCLUSIONS AND RELEVANCE The diagnostic accuracy of FFR-CT varies markedly across the spectrum of disease. This analysis allows clinicians to interpret the diagnostic accuracy of individual FFR-CT results. In combination with patient-specific factors, clinicians can use FFR-CT to judge when the cost and risk of an invasive angiogram may safely be avoided.