CBS 2019
CBSMD教育中心
中 文

Fractional Flow Reserve

Abstract

Recommended Article

Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial Combined Assessment of Stress Myocardial Perfusion Cardiovascular Magnetic Resonance and Flow Measurement in the Coronary Sinus Improves Prediction of Functionally Significant Coronary Stenosis Determined by Fractional Flow Reserve in Multivessel Disease Lesion-Specific and Vessel-Related Determinants of Fractional Flow Reserve Beyond Coronary Artery Stenosis Clinical implications of three-vessel fractional flow reserve measurement in patients with coronary artery disease Relationship between fractional flow reserve value and the amount of subtended myocardium Experience With an On-Site Coronary Computed Tomography-Derived Fractional Flow Reserve Algorithm for the Assessment of Intermediate Coronary Stenoses Fractional flow reserve in clinical practice: from wire-based invasive measurement to image-based computation The Natural History of Nonculprit Lesions in STEMI: An FFR Substudy of the Compare-Acute Trial

Clinical Trial2014; 371:1208-1217

JOURNAL:N Engl J Med. Article Link

Fractional Flow Reserve–Guided PCI for Stable Coronary Artery Disease

De Bruyne B, Pijls NH, FAME 2 Trial Investigators et al. Keywords: fractional flow reserve; PCI; medical therapy; outcome

ABSTRACT


BACKGROUNDWe hypothesized that in patients with stable coronary artery disease and stenosis, percutaneous coronary intervention (PCI) performed on the basis of the fractional flow reserve (FFR) would be superior to medical therapy.


METHODS - In 1220 patients with stable coronary artery disease, we assessed the FFR in all stenoses that were visible on angiography. Patients who had at least one stenosis with an FFR of 0.80 or less were randomly assigned to undergo FFR-guided PCI plus medical therapy or to receive medical therapy alone. Patients in whom all stenoses had an FFR of more than 0.80 received medical therapy alone and were included in a registry. The primary end point was a composite of death from any cause, nonfatal myocardial infarction, or urgent revascularization within 2 years.

RESULTS - The rate of the primary end point was significantly lower in the PCI group than in the medical-therapy group (8.1% vs. 19.5%; hazard ratio, 0.39; 95% confidence interval [CI], 0.26 to 0.57; P<0.001). This reduction was driven by a lower rate of urgent revascularization in the PCI group (4.0% vs. 16.3%; hazard ratio, 0.23; 95% CI, 0.14 to 0.38; P<0.001), with no significant between-group differences in the rates of death and myocardial infarction. Urgent revascularizations that were triggered by myocardial infarction or ischemic changes on electrocardiography were less frequent in the PCI group (3.4% vs. 7.0%, P=0.01). In a landmark analysis, the rate of death or myocardial infarction from 8 days to 2 years was lower in the PCI group than in the medical-therapy group (4.6% vs. 8.0%, P=0.04). Among registry patients, the rate of the primary end point was 9.0% at 2 years.

CONCLUSIONS - In patients with stable coronary artery disease, FFR-guided PCI, as compared with medical therapy alone, improved the outcome. Patients without ischemia had a favorable outcome with medical therapy alone. (Funded by St. Jude Medical; FAME 2 ClinicalTrials.gov number, NCT01132495.)