CBS 2019
CBSMD教育中心
中 文

Fractional Flow Reserve

Abstract

Recommended Article

The impact of downstream coronary stenoses on fractional flow reserve assessment of intermediate left main disease Diagnostic accuracy of intracoronary optical coherence tomography-derived fractional flow reserve for assessment of coronary stenosis severity Sex Differences in Adenosine-Free Coronary Pressure Indexes - A CONTRAST Substudy Identification of High-Risk Plaques Destined to Cause Acute Coronary Syndrome Using Coronary Computed Tomographic Angiography and Computational Fluid Dynamics Individual Lesion-Level Meta-Analysis Comparing Various Doses of Intracoronary Bolus Injection of Adenosine With Intravenous Administration of Adenosine for Fractional Flow Reserve Assessment Retrospective Comparison of Long-Term Clinical Outcomes Between Percutaneous Coronary Intervention and Medical Therapy in Stable Coronary Artery Disease With Gray Zone Fractional Flow Reserve - COMFORTABLE Retrospective Study Diagnostic Performance of Angiogram-Derived Fractional Flow Reserve: A Pooled Analysis of 5 Prospective Cohort Studies The Impact of Coronary Physiology on Contemporary Clinical Decision Making

Clinical Trial2018;May 22:[Epub ahead of print]

JOURNAL:N Engl J Med. Article Link

Five-Year Outcomes with PCI Guided by Fractional Flow Reserve

Xaplanteris P, Fournier S, FAME 2 Trial Investigators et al. Keywords: fractional flow reserve; PCI; medical therapy; outcome

ABSTRACT


BACKGROUND - We hypothesized that fractional flow reserve (FFR)–guided percutaneous coronary intervention (PCI) would be superior to medical therapy as initial treatment in patients with stable coronary artery disease.


METHODS - Among 1220 patients with angiographically significant stenoses, those in whom at least one stenosis was hemodynamically significant (FFR, ≤0.80) were randomly assigned to FFR-guided PCI plus medical therapy or to medical therapy alone. Patients in whom all stenoses had an FFR of more than 0.80 received medical therapy and were entered into a registry. The primary end point was a composite of death, myocardial infarction, or urgent revascularization.

RESULTS - A total of 888 patients underwent randomization (447 patients in the PCI group and 441 in the medical-therapy group). At 5 years, the rate of the primary end point was lower in the PCI group than in the medical-therapy group (13.9% vs. 27.0%; hazard ratio, 0.46; 95% confidence interval [CI], 0.34 to 0.63; P<0.001). The difference was driven by urgent revascularizations, which occurred in 6.3% of the patients in the PCI group as compared with 21.1% of those in the medical-therapy group (hazard ratio, 0.27; 95% CI, 0.18 to 0.41). There were no significant differences between the PCI group and the medical-therapy group in the rates of death (5.1% and 5.2%, respectively; hazard ratio, 0.98; 95% CI, 0.55 to 1.75) or myocardial infarction (8.1% and 12.0%; hazard ratio, 0.66; 95% CI, 0.43 to 1.00). There was no significant difference in the rate of the primary end point between the PCI group and the registry cohort (13.9% and 15.7%, respectively; hazard ratio, 0.88; 95% CI, 0.55 to 1.39). Relief from angina was more pronounced after PCI than after medical therapy.

CONCLUSIONS - In patients with stable coronary artery disease, an initial FFR-guided PCI strategy was associated with a significantly lower rate of the primary composite end point of death, myocardial infarction, or urgent revascularization at 5 years than medical therapy alone. Patients without hemodynamically significant stenoses had a favorable long-term outcome with medical therapy alone. (Funded by St. Jude Medical and others; FAME 2 ClinicalTrials.gov number, NCT01132495.)