CBS 2019
CBSMD教育中心
中 文

急性冠脉综合征

Abstract

Recommended Article

MR-proADM as a Prognostic Marker in Patients With ST-Segment-Elevation Myocardial Infarction-DANAMI-3 (a Danish Study of Optimal Acute Treatment of Patients With STEMI) Substudy Epinephrine Versus Norepinephrine for Cardiogenic Shock After Acute Myocardial Infarction Risk of Myocardial Infarction in Anticoagulated Patients With Atrial Fibrillation Heart rate, pulse pressure and mortality in patients with myocardial infarction complicated by heart failure Sex-Specific Thresholds of High-Sensitivity Troponin in Patients With Suspected Acute Coronary Syndrome High-Sensitivity Troponin I Levels and Coronary Artery Disease Severity, Progression, and Long-Term Outcomes Characterization of lesions undergoing ischemia-driven revascularization after complete revascularization versus culprit lesion only in patients with STEMI and multivessel disease - A DANAMI-3-PRIMULTI substudy Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction: Long-Term 6-Year Outcome of the Randomized IABP-SHOCK II Trial

Clinical Trial2018 Jul 19.[Epub ahead of print]

JOURNAL:Circulation. Article Link

Mild Hypothermia in Cardiogenic Shock Complicating Myocardial Infarction - The Randomized SHOCK-COOL Trial

Fuernau G, Beck J, Thiele H et al. Keywords: Acute Coronary Syndromes, Heart Failure and Cardiomyopathies, Invasive Cardiovascular Angiography and Intervention, Acute Heart Failure, Interventions and ACS

ABSTRACT


BACKGROUND - Experimental trials suggest improved outcome by mild therapeutic hypothermia for cardiogenic shock following acute myocardial infarction. The objective of this study was to investigate hemodynamic effects of mild therapeutic hypothermia in patients with cardiogenic shock complicating acute myocardial infarction.


METHODS - Patients (n=40) with cardiogenic shock undergoing primary percutaneous coronary intervention without classical indication for mild therapeutic hypothermia underwent randomization in a 1:1 fashion to mild therapeutic hypothermia for 24 h or control. The primary endpoint was cardiac power index at 24 h; secondary endpoints included other hemodynamic parameters as well as serial measurements of arterial lactate.


RESULTS - No relevant differences were observed for the primary endpoint cardiac power index at 24 h (mild therapeutic hypothermia vs. control: 0.41 [interquartile range 0.31-0.52] vs. 0.36 [inter-quartile range 0.31-0.48] W/m2; p=0.50, median difference -0.025 [95% confidence interval -0.12 to 0.06 W/m2]). Similarly, all other hemodynamic measurements were not statistically different. Arterial lactate levels at 6, 8 and 10 hours were significantly higher in patients in the MTH group with a slower decline (p for interaction 0.03). There were no differences in 30-day mortality: (60 vs. 50%, hazard ratio 1.27 [95% confidence interval 0.55-2.94]; p=0.55).


CONCLUSIONS - In this randomized trial mild therapeutic hypothermia failed to show a substantial beneficial effect in patients with cardiogenic shock after acute myocardial infarction on cardiac power index at 24 h.


CLINICAL TRAIL REGISTRATION - URL: www.clinicaltrials.gov Unique Identifier: NCT01890317.