CBS 2019
CBSMD教育中心
中 文

急性冠脉综合征

Abstract

Recommended Article

Linking Spontaneous Coronary Artery Dissection, Cervical Artery Dissection, and Fibromuscular Dysplasia: Heart, Brain, and Kidneys Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction Improvement of Clinical Outcome in Patients With ST-Elevation Myocardial Infarction Between 1999 And 2016 in China : The Prospective, Multicenter Registry MOODY Study Colchicine Inhibits Neutrophil Extracellular Trap Formation in Patients With Acute Coronary Syndrome After Percutaneous Coronary Intervention Outcome of Applying the ESC 0/1-hour Algorithm in Patients With Suspected Myocardial Infarction Optimal Timing of Intervention in NSTE-ACS Without Pre-Treatment The EARLY Randomized Trial Complete or Culprit-Only Revascularization for Patients With Multivessel Coronary Artery Disease Undergoing Percutaneous Coronary Intervention: A Pairwise and Network Meta-Analysis of Randomized Trials Effect of a Restrictive vs Liberal Blood Transfusion Strategy on Major Cardiovascular Events Among Patients With Acute Myocardial Infarction and Anemia: The REALITY Randomized Clinical Trial

Original Research2019 Apr 16;73(14):1781-1791.

JOURNAL:J Am Coll Cardiol. Article Link

Acute Noncardiac Organ Failure in Acute Myocardial Infarction With Cardiogenic Shock

Vallabhajosyula S, Dunlay SM, Prasad A et al.

ABSTRACT


BACKGROUND - There are limited data on acute noncardiac multiorgan failure in cardiogenic shock complicating acute myocardial infarction (AMI-CS).


OBJECTIVES - The authors sought to evaluate the 15-year national trends, resource utilization, and outcomes of single and multiple noncardiac organ failures in AMI-CS.


METHODS - This was a retrospective cohort study of AMI-CS using the National Inpatient Sample database from 2000 to 2014. Previously validated codes for respiratory, renal, hepatic, hematologic, and neurological failure were used to identify single or multiorgan (2 organ systems) noncardiac organ failure. Outcomes of interest were in-hospital mortality, temporal trends, and resource utilization. The effects of every additional organ failure on in-hospital mortality and resource utilization were assessed.


RESULTS - In 444,253 AMI-CS admissions, noncardiac single or multiorgan failure was noted in 32.4% and 31.9%, respectively. Multiorgan failure was seen more commonly in admissions with non-ST-segment elevation AMI-CS, nonwhite race, and higher baseline comorbidity. There was a steady increase in the prevalence of single and multiorgan failure. Coronary angiography and revascularization were performed less commonly in multiorgan failure. Single-organ failure (odds ratio: 1.28; 95% confidence interval: 1.26 to 1.30) and multiorgan failure (odds ratio: 2.23; 95% confidence interval: 2.19 to 2.27) were independently associated with higher in-hospital mortality, greater resource utilization, and fewer discharges to home. There was a stepwise increase in in-hospital mortality and resource utilization with each additional organ failure.


CONCLUSIONS - There has been a steady increase in the prevalence of multiorgan failure in AMI-CS. Presence of multiorgan failure was independently associated with higher in-hospital mortality and greater resource utilization.

 

Copyright © 2019 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.